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1 Introduction

In many scientific fields, there is no better start to a results section than, “As

predicted, we found a significant difference between . . . ” Finding a significant

difference (e.g., p < 0.05) allows authors to affirm their beliefs about, for

example, color perception, attention, the workings of visual circuits, or how

people search for targets in a cluttered display. Many scientists learned the

basics of hypothesis testing as undergraduate students, and they learned to deal

with more complicated tests (e.g., multi-way ANOVA, ANCOVA, mediation,

moderation) as graduate students. Statistical analyses are central to modern

investigations of psychology, including perception, and hypothesis testing is

a common approach to statistical analysis.

Despite playing a central role, many properties of hypothesis tests are mis-

understood. These misunderstandings can lead to scientific articles that make

no sense and to experiments that are so poorly conceived that it was never

appropriate to run them. Over the past seven years, psychology has experienced

a “replication crisis,” whereby some important findings do not hold up when

independent scientists repeat the experiment; much of the crisis seems to be

related to inappropriate uses of hypothesis testing.

With this issue in the background, it might be useful to characterize some

confusions about hypothesis testing and to describe its assumptions and

limitations. Throughout this Element, we provide examples of how the issues

impact the design and interpretation of perception studies. This discussion is

not meant to be a critique of hypothesis testing itself; although after consider-

ing all the challenges, you may decide that hypothesis testing is not worth the

effort. Alternative approaches include a focus on estimation (Cumming,

2014), Bayesian methods (Kruschke, 2010; McElreath, 2016), and informa-

tion criterion methods (Burnham & Anderson, 2002), but they are not dis-

cussed here.

The target audience for this Element is someone who has already taken one

(or more) statistics courses and uses hypothesis testing. The discussion requires

little explicit mathematics (and there are no theorems!), but a general under-

standing of sampling distributions, p-values, and power is probably going to be

necessary for the reader to follow all the arguments. The selected topics

represent issues that have been raised over the past few years in discussions

with colleagues and students. Readers may be disappointed to discover that the

text sometimes identifies problems without proposing solutions, but it may be

useful to discover that there remain unsolved problems in the use of hypothesis

testing. Indeed, an overall theme of the Element is that the proper use of

hypothesis testing is rather more complicated than generally believed. While
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the basic idea is simple and appealing, the actual use is often quite complicated,

and some common practices undermine the tenets of hypothesis testing.

2 The Basics of Hypothesis Testing

Hypothesis testing offers an appealing approach to data analysis. Follow the

rules and you will make a Type I error (conclude there is an effect when there

really is no effect) only 5% of the time (or whatever criterion you set). Such

Type I error control sounds really good because it aligns with the natural

skepticism of a scientist who doubts an effect exists unless there is sufficient

reason to believe otherwise.

Hypothesis testing is also pretty easy to apply. We create a quantitative null

hypothesis that indicates “no effect” (e.g., population means equal each other

across two conditions) and then predict properties of our data set if that null

hypothesis is true. A fundamental concept here is the sampling distribution,

which describes how common it should be to find various values of a sample

statistic if the null hypothesis is true. The test essentially checkswhether the statistic

computed from the observed data is among the “rare” statistics in the sampling

distribution by computing the probability that the observed data or something even

more extreme would occur. This probability is the p-value. See Figure 1.

The details get more complicated for other analyses, but the basic reasoning

is the same as that given earlier. Assume the null is true and estimate the

probability of the observed (or more extreme) statistic under that assumption.

If the probability is low (e.g., less than 0.05), reject the null hypothesis:

conclude statistical significance. By definition, if everything is done properly,

you should only make a Type I error (reject the null hypothesis when it is

actually true) at your criterion rate (e.g., 0.05).

A key part of that last sentence is “if everything is done properly.” Lots of

things can go wrong when doing hypothesis testing, even when scientists are

operating with the best of intentions. As we will see in the following sections,

even seemingly small deviations from the proper procedures for hypothesis

testing can cause the Type I error rate to be much larger than intended.

2.1 An Example from Perception

The stimuli in Figure 2a show the Muller–Lyer illusion: the horizontal line with

outward wings appears to be longer than the horizontal line with inward wings.

To measure the size of the illusion, n=310 observers adjusted the length of a line

with wings so that it appeared to be the same length as a comparison line of 100

pixels long with no wings. See the Appendix for details on how to get the data

set. Each observer made eight matches for the inward wing and outward wing
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(a) (b)

–5 –4 –3 –2 –1 0 1 2 3 4 5 –5 –4 –3 –2 –1 0 1 2 3 4 5

t = 2.565 t = –2.565 t = 2.565

p = 0.01

p = 0.02

Figure 1 The p-value is the area under the curve of the sampling distribution beyond the observed test statistic. Here, the sampling

distribution is for the t-value statistic that compares two sample means. (a) For a positive one-tailed test, the area is more extreme in the

observed direction. (b) For a two-tailed test, the area is more extreme than the observed value in both tails.
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conditions, and the observer’s score was the mean match length across the

comparisons for each condition. Figure 2b plots the averagematch length across

the 310 observers for each wing type. As expected, the match length is smaller

than 100 pixels when the line has outward wings (a 92-pixel-long line with

outward wings looks to be 100 pixels long). Likewise, the match length is

longer than 100 pixels when the line has inward wings (a 112-pixel-long line

with inward wings looks to be 100 pixels long).

A dependent two-sample hypothesis test comparing the means for the two

wing conditions requires the sample size (in this case n=310) and computation

of the sample means, standard deviations, and correlation of subject scores

across the conditions (X Inward ¼ 112:3, sInward ¼ 8:1, X Outward ¼ 91:5,

sOutward ¼ 8:0, r ¼ 0:522). With this information, the standard deviation of the

difference of paired scores is computed to be sDifference ¼ 7:87 and the test

statistic is t=46.6 with df=309, which corresponds to p<0.001. If there were

truly no difference in the mean line lengths for the population of observers, then

a random sample of 310 observers that produced a t-value test statistic at least as

large as what we observed would be extremely rare. In practice, we say that the

observed difference is “significant.”

Take away message: When done properly, hypothesis testing controls the

Type I error rate and the calculations are fairly easy to perform.

3 Robustness of the Two-sample t-test

A canonical hypothesis test is the two-sample t-test that compares two inde-

pendent means. Our undergraduate classes told us that the t-test requires two

(a) (b)
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Figure 2 Stimuli and summary data for an experiment on the Muller–Lyer

illusion. (a) A line with outward wings looks longer than a line with inward

wings. (b) Mean line lengths for lines with the inward or outward wings so that

they appeared to be the length of a 100-pixel line with no wings. The error bars

indicate the standard deviation.
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assumptions: the population distributions are normally distributed and the

population standard deviations are the same. The mathematical theorems

about Type I error rates no longer hold if the population distributions are non-

normal, but in practice it matters only a little bit. For example, the distribution

for population 1 in Figure 3a is strongly skewed, while the distribution for

population 2 is a normal distribution; but both distributions have the same mean

value (0), so a test of population means is for a true null hypothesis. Out of

10,000 simulated t-tests based on samples drawn from these distributions, the

Type I error rate for the standard t-test is 0.051, which is just a bit above the

intended 0.05. (See the Appendix for access to the simulation code.) In general,

as long as the population distributions are unimodal and close to a normal

distribution, the Type I error rate will be close to the intended value.

As long as the samples drawn from each population are of equal sizes, the

t-test is also quite robust when the population standard deviations are different.

In Figure 3b, population 1 has a standard deviation of 5, while population 2 has

a standard deviation of 1. From 10,000 simulated t-tests with equal sample sizes

(n1=n2=25), the Type I error rate is 0.059, which is only somewhat bigger than

the intended 0.05.

In contrast to these situations, unequal standard deviations coupled with

unequal sample sizes can be a disaster. If a large sample size (n1=25 scores) is

combined with the large standard deviation for population 1 and a smaller

(a)
Population 1

Population 2

Population 1

Population 2

(b)

–20.00 –10.00 0.00 10.00 20.00

–20.00 –10.00 0.00 10.00 20.00

–20.00 –10.00 0.00 10.00 20.00

–20.00 –10.00 0.00 10.00 20.00

Figure 3 Exploring robustness of the t-test for two independent sample means.

Here, every population distribution has a mean of zero. (a) Although the t-test

assumes normal population distributions, even very skewed population

distributions do not cause severe problems. For these populations the Type

I error rate is 0.051. (b) Normal population distributions with unequal

standard deviations. Here, the Type I error rate can be very different from the

intended 0.05.
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sample size (n2=5 scores) is combined with the small standard deviation for

population 2, then the Type I error rate is around zero (none of the 10,000

simulated t-tests rejects the null hypothesis). On the other hand, if the larger

sample size is paired with the smaller standard deviation, then the Type I error

rate is around 0.38, even when the 0.05 criterion is used to decide statistical

significance.

The good news is that there is an easy solution to this problem. Welch’s test

is an alternative to the t-test that maintains the desired Type I error rate even

when unequal standard deviations are paired with unequal sample sizes. In the

cases presented earlier, Welch’s test produces Type I error rates of 0.046 and

0.05, respectively. Welch’s test is not perfect; for example, if the population

standard deviations are equal but the sample sizes are different, a Type I error

rate of around 0.06 is produced. Nevertheless, it avoids the really egregious

cases that can occur for the standard t-test.

Take away message: The t-test is quite robust to deviations from some of its

assumptions; but if you have unequal sample sizes, you should use Welch’s test

rather than a standard t-test.

4 Adding Data Increases the Type I Error Rate:
Optional Stopping

A not uncommon situation is that after gathering some initial data, your

analysis produces a promising but not significant result (e.g., p=0.08). Some

people describe such a result as a “marginal effect” and move on, but that feels

unsatisfying since the whole point of your experiment was to test for the effect

(and it is not clear what “marginal”means anyhow). What some scientists do is

add more subjects to the data set and rerun the analysis. That approach is

problematic because when you make a final decision, you have given yourself

two chances to reject the null hypothesis. Since the first decision (assuming

everything else is appropriate) had a 5% chance of making a Type I error,

the second decision inflates the error rate. The amount of increase in Type I error

depends on a variety of factors (notably the sizes of the first and added samples).

Moreover, suppose after adding some subjects to the original data set, your

analysis produces p=0.07. You face the same issue and may decide to add still

more subjects to the data set. If you are willing to keep adding subjects, the

probability of making a Type I error approaches 1.0!

The problem is actually worse than it seems because Type I error control in

hypothesis testing is not a property of any individual test. Rather, it is a property

of the procedure you use to make a final decision about whether an effect exists

(e.g., your result is statistically significant). If your procedure has many decision

points (e.g., you will add subjects before making your final decision if p=0.08,
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but not if p=0.3), then you have to consider all those decision points, whether

or not you actually follow them in a given situation. Thus, if your first data set

produces p=0.02 and you report a significant result as your final decision, then

your Type I error rate may be much higher than your intended 0.05. The Type

I error rate has to consider what youwould have donewith results different from

what you observed. Thus, if you would have added subjects had the p-value

been larger, then that fact has to be included when considering the Type I error

rate of your procedure.

The more principled way of describing the problem is to flip it around and

describe it as optional stopping. It is not the adding of subjects that is truly

problematic; rather the problem comes from stopping data collection when you

are satisfied with the outcome. What is the absolute upper limit of resources

(e.g., sample size) you would commit to a study? In many situations, scientists

pick a sample size to “start,” but they know that they will run more subjects if

necessary. Having possible stopping points along the way up to that absolute

upper limit sample size must inflate the Type I error rate. Oftentimes, scientists

do not know their absolute upper limit sample size, nor (until faced with the

choice) do they know what they would do if they found p=0.07 on their third

analysis check. Such scientists cannot know the Type I error rate for their

hypothesis-testing procedure.

What to do? There are sequential sampling methods that let you specify

stopping points in advance and still maintain a desired Type I error rate.

A simple approach is called the composite open adaptive sequential test

(COAST; Frick, 1998). Here you gather an initial data set and run a t-test. If

the p-value is below 0.01, you stop and conclude that you found a significant

result. If the p-value is above 0.36, you stop and conclude that you did not find

a significant result. Otherwise, you add another score and repeat. This proce-

dure has a Type I error rate of 0.05, and it tends to use fewer subjects than

a traditional t-test where sample size has been identified by a power analysis.

There are costs, of course; you cannot decide whether or not to use COAST

after looking at your data set. For example, if your first sample produces 0.02,

you cannot claim significance; instead, the COAST procedure requires you to

keep adding subjects. Moreover, for a given sample size, sequential sampling

approaches have (somewhat) lower power than the traditional t-test. Finally,

COAST does not have an upper limit on the sample size. As a result, if data

collection stops with a p-value between 0.01 and 0.36, the scientist would not

conclude evidence for an effect, and so COAST has a Type I error rate a bit

below the intended 0.05. Other sequential sampling approaches allow for

upper limits on the sample size, but you must have the resources to generate

such sample sizes, even though you are unlikely to use them. (You cannot say
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that you will run up to 250 subjects if you only have enough money to pay for

75 subjects.)

You might say that the solution to optional stopping is obvious: pick a sample

size in advance and stick to it. That can work in some situations, but then what

do you do when you get p=0.08? If you run another experiment with entirely

new data, then you inflate the Type I error rate by having multiple chances to

reject the null. Meta-analysis (pooling data across experiments) does not help

either because it is just a variation of optional stopping; you would not have run

the follow-up studies if the original study were sufficiently convincing (Ueno,

Fastrich, & Murayama, 2016). Even worse, although you might have a fixed

sample size in mind for your study, someone else might have a different

maximum sample size in mind and use your study as a starting point for further

investigation. These different analyses would have different procedures and

therefore different Type I error rates, even if they reported the same results for

the same samples.

Taken to an extreme, the fixed sample size requirement for hypothesis testing

seems to suggest that each experiment can only be run once, that you have to

specify the sample size in advance, and then you (and everyone else) have to

accept the decision of that experiment. That extreme view seems rather ludi-

crous, but if you relax the fixed sample size requirement of hypothesis testing,

then you lose control of the Type I error rate, which is the whole point of

hypothesis testing. In some sense, this view emphasizes that science cannot be

too closely tied to statistical analyses. Statistical analysis is a means of double-

checking scientific reasoning, but it cannot do the reasoning itself.

4.1 An Example from Perception

Optional stopping causes problems in addition to an inflation of the Type I error

rate. Consider theMuller–Lyer experiment that produced the results in Figure 2,

but suppose that your research interest was the correlation across subjects of

matching lengths for inward and outward wings. Using the entire data set

(n=310), this correlation is r=0.52, which is significant (t308=10.7, p<0.001).

If instead of gathering all the data and then analyzing, you analyzed data from

just the first 30 participants and then added data one participant at a time until

finding a significant result, then you would stop after getting data from n=53

subjects, when (for this data set) the correlation is r=0.3, which just satisfies

the significance criterion (t51=2.25, p=0.03). Analyses with earlier data sets do

not produce significant results. For example, with the first n=52 subjects, the

correlation is r=0.24, which corresponds to t50=1.78, p=0.08. Generally speak-

ing, optional stopping tends to produce results that just satisfy the significance
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criterion. This means that the estimated effect size can overestimate or under-

estimate the true effect size, depending on its magnitude in the initial sample.

For example, if the estimated effect happens to be small for the initial sample,

then you rarely find strong effects because data collection stops before a strong

result appears. Figure 4 demonstrates this property by plotting the sample r and

p values generated by an optional stopping approach for the Muller–Lyer data

set in Figure 2. The early samples happen to underestimate the correlation, and

significance is found before the correlation is pulled toward the value calculated

from the entire data set.

Take away message: Unless you are in a situation where you can fix the

sample size, hypothesis testing does not necessarily do a good job control-

ling the Type I error rate. Unfortunately, it is difficult to avoid optional

stopping.

5 ANOVA Can Be Extremely Conservative

Undergraduate statistics classes often introduce analysis of variance (ANOVA)

as a way to resolve the multiple testing problem. If you have multiple tests (for

example, to compare means against one another), then each test has a risk of

making a Type I error and that risk accumulates, so that the probability of

making at least one Type I error from the multiple comparisons is much larger

than the intended 0.05 (or whatever rate you choose). ANOVA cleverly solves

50 100 150 200 250 300

Optional stopping sample size
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Correlation
p-valuep-value
Correlation

Figure 4 Using optional stopping for the Muller–Lyer data set from Figure 2

dramatically underestimates the correlation. The vertical line indicates the

first time the updated sample produced a p-value less than the 0.05 criterion.

Here, the sample correlation is small compared to what it would be with the

full data set.
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this problem by testing an omnibus null hypothesis (all means equal one

another).

The cost of using an omnibus null hypothesis is that it does not indicate which

means differ from other means. Thus, a significant ANOVA is usually followed

up with additional tests to compare means (or groups of means) against one

another. These additional tests have the feel of being the “dark arts” of hypoth-

esis testing because they all seem a bit ad hoc. In many cases, these methods err

on the side of being extra conservative.

For example, consider a situation where a scientist is testing search times for

four visual maps. The scientist wants to compare her preferredmap design to the

other three designs. To convince other scientists that her design is better, she

needs to show the following outcomes:

• A significant one-way ANOVA, which indicates that there is some difference

among the map designs.

• A significant contrast of design 1 compared to design 2.

• A significant contrast of design 1 compared to design 3.

• A significant contrast of design 1 compared to design 4.

The three contrasts are necessary to conclude that her preferred design is

better than each of the other designs.What is the Type I error rate for concluding

that her preferred design is better than the other designs? Each hypothesis test

has a Type I error rate of 0.05. But if all of the nulls are true and there really is no

difference between any of the map designs, the Type I error rate of all four tests

is around 0.003. It should intuitively make sense that requiring three significant

contrasts in addition to a significant ANOVA has to reduce the Type I error rate.

The reader can verify these calculations and create variations using the online

ANOVA power calculator in Francis (2018) by setting up four levels, entering

zero for each mean, and creating three appropriate contrasts.1 Since all the

population means are equal, the computed power for all tests will correspond to

the Type I error rate.

Thus, if a scientist has specific comparisons in mind for drawing her

conclusions, following standard analysis approaches may be setting up

enormous statistical hurdles. Simulation studies using the power calculator

in Francis (2018) show that a Type I error rate of just under 0.05 is generated

across the full set of four tests if you set the significance criterion to be

α=0.3 for each test. With such a criterion, each test has a fairly high risk of

making a Type I error, but it is rather unlikely that all the tests will make

a Type I error.

1 https://introstatsonline.com/chapters/calculators/OneWayANOVAPower.shtml
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However, you would not want to use this inflated criterion because it would

generate a high Type I error for other cases. Suppose maps 1 and 2 have

identical population mean reaction times, so a significant difference will be

a Type I error. Further suppose that maps 3 and 4 have very different means

than those for maps 1 and 2. Thus, the tests that compare map 1 to map 3 and to

map 4 cannot make Type I errors. Since your conclusion that map 1 is best

requires all tests to be significant, the probability of making a Type I error

(because map 1 is not actually better than map 2) is the probability of getting

significant outcomes for all four tests (ANOVA and three contrasts). Suppose

that any comparisons involving map 1 and map 3 or map 4 have high power,

then the overall conclusion hinges on the test comparing map 1 and map 2. The

Type I error for the overall conclusion is thus the α-value used for that test.

Scientists typically want to consider the worst-case scenario for Type I error

control, so the safe approach is to have each test use the desired α-value. There

is a cost for this safety, though; as we will see in Section 7, an experiment that

requires multiple significant outcomes may have low power.

5.1 An Example from Perception

The Muller–Lyer illusion experiment described in Figure 2 also included a No

wings condition. When comparing the conditions, a scientist might want to

show that compared to the No wings condition, the Outward wings condition

produces smaller matching line lengths (thus it is perceived to be larger than it

really is) and that the Inward wings condition produces larger matching line

lengths (thus it is perceived to be smaller than it really is). To convincingly

demonstrate these effects, the scientist would need the following:

• A significant one-way ANOVA, which indicates that there is some difference

among the conditions.

• A significant contrast where the Outward wings match length is smaller than

the No wings match length.

• A significant contrast where the Inward wings match length is larger than the

No wings match length.

• A significant contrast where the Inward wings match length is larger than the

Outward wings match length.

The three contrasts are necessary to conclude that the illusion is found; should

any of these tests not produce a significant result, the experiment would not be

interpreted as entirely consistent with the presence of the Muller–Lyer illusion.

Suppose there is no illusion effect at all. What is the Type I error rate for

concluding that the illusion exists? Figure 5 shows how to set up an online
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Enter the Type I error rate, 0.05

Enter the population standard deviation, 8

Enter the population correlation between levels, ρ 0.52

How many levels (groups) do you have in your ANOVA? 3

Number of iterations

(bigger values produce better estimates, but take longer)
50000

Level Name Population Mean

OutwardWing 100

InwardWings 100

NoWings 100

Add a contrast test

Specify hypotheses for Contrast1

H0: 1 μOutwardWings + μInwardWings + μNoWings = 00 –1

Ha : Negative one-tail

0.05

Specify hypotheses for Contrast2

Specify hypotheses for Contrast3

Power for all
 tests  = 0.00008 Calculate minimum sample size

Sample size n  = 310 Calculate power

Test Estimated Power

ANOVA 0.0499

Contrast1 0.04982

Contrast2 0.0487

Contrast3 0.05086

α =
σ =

=
Κ=

H0: 0 μOutwardWings + μInwardWings + μNoWings = 01 –1

α

Ha: Positive one-tail

0.05α

H0: –1 μOutwardWings + μInwardWings + μNoWings = 01 0

Ha: Positive one-tail

0.05α

Figure 5 Using an online power calculator to estimate the Type I error rate

when an ANOVA and three contrasts must all be significant. The Type I error for

all four tests being significant is 0.00008
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calculator using values similar to those in the data set.2 You can easily verify

that the values for the standard deviation, correlation, (equal valued) means, and

sample size do not matter. Instead, the Type I error rate is determined by the

number and type of hypothesis tests. Clicking on the Calculate power button

runs a simulation of 50,000 experiments that generates data sets sampled from

populations having the specified properties. Each data set is then subjected to

the dependent ANOVA and three (one-tailed) contrast tests. Since the null

hypothesis is true in these simulations, significance for any test is a Type

I error. The table at the bottom of Figure 5 indicates that, as expected, each

hypothesis test has a Type I error rate of approximately 0.05. However, the

probability of all four tests being significant is indicated in the Power for all

tests text field; and the Type I error rate of all four tests is 0.00008.

Take away message: If your conclusion requires multiple test outcomes, then

the Type I error rate for your conclusion might be much smaller than the

criterion you set for any individual test.

6 ANOVA Handles Only One Type of Multiple
Testing Problem

Note the critical difference between the previous section and the traditional

multiple testing problem. In the previous section, multiple tests must be signifi-

cant to provide support for the scientist’s conclusion. These multiple tests tend to

reduce the Type I error rate because multiple outcomes must be simultaneously

satisfied. In the traditional multiple testing problem, the concern is that you might

find at least one Type I error from multiple tests. These multiple tests tend to

increase the Type I error rate because there are multiple ways to make a Type

I error. The latter is a concern about controlling the Type I error rate for

exploratory studies, where you do not have specific outcomes in mind.

Scientists want to control Type I error for the worst-case scenario. In an

exploratory study, the worst-case scenario is that all the null hypotheses are true

but one or more of the tests may produce a significant result. Sometimes this

scenario can be handled by analyzing data with ANOVA (to test whether one

condition is different from other conditions). Unfortunately, ANOVA only does

a good job controlling the Type I error rate for exploratory investigations using

a one-way ANOVA. Multi-way ANOVA introduces a new kind of multiple

testing problem (Cramer et al., 2016).

Suppose you are doing exploratory work and you use a 2×2 ANOVA to

search for significant results. You set α=0.05 to control the Type I error rate, but

your ANOVA has three tests: a main effect for factor 1, a main effect for factor

2 https://introstatsonline.com/chapters/calculators/OneWayANOVADependentPower.shtml
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2, and an interaction between factor 1 and factor 2. If there is actually no

difference between populations, then each test has 0.05 probability of making

a Type I error, but the probability of at least one of the tests making a Type

I error is 0.14. See the Appendix for reference to code that estimates this

probability from simulated experiments.

The multiple testing problem gets worse with additional factors in the

ANOVA. A 2×2×2 ANOVA has seven tests (three main effects, three two-way

interactions, one three-way interaction) and a Type I error rate of 0.3. AnANOVA

with six factors (they exist in our journals!) has 63 tests and a Type I error rate of

0.96. Any ANOVAwith more than six factors is almost guaranteed to produce at

least one Type I error among the main effects and various interactions (see

Figure 6). It does not matter how many levels are within each factor.

You can apply various methods such as Bonferroni to reduce the α criterion

value and thereby reign in the Type I error rate, but then it becomes less likely

that you will find any significant results, even if there are population differences.

Perhaps the fundamental point is that ANOVA should not be used for explora-

tory investigations; certainly exploratory results should not be treated the same

as confirmatory results.

6.1 An Example from Perception

The Muller–Lyer illusion experiment described in Figure 2 also had con-

ditions where the match line was oriented vertically (the comparison line
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Figure 6 The probability of a multi-way ANOVA producing at least one Type

I error as a function of the number of factors.
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was always horizontal). Without wings, vertical lines are perceived to be

longer than horizontal lines having the same physical length; this phenom-

enon is known as the horizontal-vertical illusion. Thus, when observers

adjust the vertical matching line to the horizontal comparison line, they

will (on average) set the vertical line to be physically smaller than the

horizontal line. If the data were analyzed with a 2 (wing characteristics) ×

2 (orientation) ANOVA with α=0.05, the Type I error rate of finding at

least one significant effect is 0.14.

Take away message: Multi-way ANOVA designs generally do a poor job

controlling the Type I error rate for exploratory investigations that look for some

significant results out of many tests.

7 Power Analyses Should Consider All Relevant Tests

Many journals now insist that researchers report a power analysis that demon-

strates their study has a sufficiently high probability of producing a significant

result, if there actually is an effect. For simple cases, such as a two-sample t-test,

power calculations are straightforward if one has a specific alternative hypoth-

esis. Unfortunately, for more complicated designs, such as a one-way ANOVA

with several contrasts, scientists rarely consider the full set of hypotheses; this

oversight can lead to dramatically underpowered studies.

Consider a situation where a researcher plans to test a preferred visual map

design against three other designs by using an independent ANOVA and three

contrasts that compare map 1 to each of the other maps. Suppose the researcher

has a good guess as to the population means and standard deviation (search

times in seconds) for each map: μ1=2.4, μ2=2.6, μ3=2.8, μ4=3.0, and σ=0.5.

A program such as G*Power (Faul, Erdfelder, Lang, & Bucher, 2007) will

convert the means and standard deviation to a standardized effect size called

Cohen’s f=0.447 (this is the standard deviation of the population means, using

the “population formula” divided by the population standard deviation). If the

researcher plans for power of 0.9 with α=0.05, G*Power will indicate that

the experiment requires a sample size of 76 subjects (19 in each sample for

the different maps).

A researcher using this sample size will likely be sorely disappointed. If there

really are the planned-for differences in population means, her study does have

a 0.9 probability of producing a significant ANOVA; but the study has only

a 0.21 probability of producing the full set of desired outcomes. In particular, the

contrast to test between μ1 and μ2 has only around 0.23 power when the sample

sizes are 19 in each group. To have 0.9 power for the entire set of tests requires

a sample size of at least 131 in each group (a total of 524 subjects).
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Obviously, there are enormous differences between studies requiring 76

subjects and 524 subjects. A power analysis that does not consider all the

relevant tests can lead to extremely poor experimental designs. These calcula-

tions and variations thereof can be reproduced in the Independent ANOVA

power calculator in Francis (2018). You can, for example, consider designs

with unequal sample sizes and discover that an experiment with n1=n2=150 and

n3=n4=100 also produces a 0.9 probability of all tests being significant.

Researchers sometimes do not perform a power analysis because they think

that they do not know how to estimate the effects of interest. Oftentimes, such

researchers are not giving themselves enough credit. If forced to do the analysis,

they would discover that their experience or a perusal of existing literature does

give some guidance. A power analysis does not need to be especially precise;

even sloppy estimates can help identify appropriate sample sizes.

7.1 An Example from Perception

Suppose you want to repeat the experiment of Figure 2 to explore the Muller–

Lyer and horizontal-vertical illusions with a new sample (maybe a patient

population that possibly does not experience the illusions) and a more compli-

cated set of analyses. Table 1 lists the various tests that might be used in this type

of study. It might seem excessive to run 13 hypothesis tests to demonstrate the

Muller–Lyer and horizontal-vertical illusions, but actually such combinations

of tests are quite common in academic papers, and the reasoning is actually

pretty sound. With an ANOVA across the full data set, you want to show a main

effect of orientation (the horizontal-vertical illusion) and a main effect of wings

(the Muller–Lyer illusion). Without these significant main effects, your experi-

ment would not be consistent with the illusions. However, just those main

effects are not enough. You would also want to show a main effect of wings

for each orientation. Moreover, for each orientation you would run three con-

trasts to compare each combination of wing types. All of these contrasts need to

produce significant results to demonstrate the Muller–Lyer illusion for each

orientation. Finally, you need to show an effect of orientation for each of the

three wing types. To compute the power of your study to show significant results

for all of these tests, you need to specify the expected population values if the

illusion exists and the details of your design. A reasonable source for expected

values might be the sample statistics from the original study. Table 2 lists the

statistics that are needed to do the analysis.

To compute power, the values in Table 2 were used to define a population. An

R computer program (see the Appendix for how to download the code) sampled

values from the population for a given sample size and then ran the various tests
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Table 1 Various tests to analyze a study of the combined Muller–Lyer and
horizontal-vertical illusions.

Test Ha

2×3 ANOVA on full data set
Main effect of orientation μV 6¼ μH
Main effect of wings μO 6¼ μI, μO 6¼ μN, or μI 6¼ μN
One-way ANOVA on horizontal

orientations
Main effect of wings μHO 6¼ μHI, μHO 6¼ μHN, or μHI 6¼ μHN
Contrast for outward vs. none wings μHO 6¼μHN
Contrast for inward vs. none wings μHI 6¼μHN
Contrast for inward vs. outward wings μHI 6¼μHO
One-way ANOVA on vertical

orientations
Main effect of wings μVO 6¼ μVI, μVO 6¼ μVN, or μVI 6¼ μVN
Contrast for outward vs. none wings μVO 6¼μVN
Contrast for inward vs. none wings μVI 6¼μVN
Contrast for inward vs. outward wings μVI 6¼μVO
One-way ANOVA on outward wings
Main effect of orientation μHO 6¼μVO
One-way ANOVA on inward wings
Main effect of orientation μHI6¼μVI
One-way ANOVA on none wings
Main effect of orientation μHN 6¼μVN

Table 2 Sample statistics from the Muller–Lyer experiment that are needed to
perform a power analysis.

Statistic Value

Mean for horizontal, wings in 112.3
Mean for horizontal, wings out 91.5
Mean for horizontal, no wings 101.8
Mean for vertical, wings in 104.3
Mean for vertical, wings out 83.4
Mean for vertical, no wings 92.5
Standard deviation (all conditions) 8.0
Correlation (all conditions) 0.5
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to see if they all produced significant outcomes. This procedure was repeated

5000 times, and the solid curve in Figure 7 plots the proportion of successes (all

13 hypothesis tests produced significant results) against the sample size. The

curve indicates that a sample of size n=11 is sufficient to produce a 0.9 success

rate. A small sample is sufficient here because the differences between means

are quite large relative to the standard deviation (see Table 2).

Naturally, the power analysis is only as good as the estimates provided in

Table 2. In particular, if your planned study investigates a different population

than the original study, you may want to consider that the means, standard

deviations, and correlations might be different. For example, the data set in

Figure 2 is based on a population of undergraduates at a large Midwestern

university. A more diverse population with a broader range of ages might have

a larger standard deviation. Likewise, a more specialized population, such as

patients taking a certain kind of medication, may have quite different statistics.

These differences can have important implications for the design of your

experiment. Suppose that your new population has a standard deviation in line-

length judgments of σ=16, which is twice the value listed in Table 2. Rerunning

the simulated experiments with this new standard deviation produces the dashed

line in Figure 7. This curve suggests that a sample of size n=40 is required to

have a 0.9 success rate for all the hypothesis tests.
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Figure 7 The proportion of successful outcomes from simulated experiments

for a replication of the line length illusion experiment in Figure 2. The solid

curve supposes that the sample statistics from the data in Figure 2 are

representative of the population. The dashed curve is similar but supposes that

the standard deviation across participants is twice the original value. The

vertical gray lines indicate the sample size for each simulation that is needed to

produce a 0.9 success rate.
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Take away message: Power analyses and sample size determinations need to

consider the full set of tests that are relevant to the conclusions. Not including

the full set can lead to dramatically underpowered experiments.

8 The Only p-value You Can Plan for Is Zero

The proper interpretation of the p-value in hypothesis testing is rather confus-

ing, so many people have a kind of intuition about how it is produced and what

it means. Unfortunately, this intuition can lead to inappropriate ideas about how

to design experiments. Intuition correctly points out that (all else equal) larger

samples tend to produce smaller p-values. However, some people interpret this

observation as indicating that a researcher should pick a sample size large

enough to produce a significant p-value but not waste resources by using an

excessively large sample size, which will generate an unnecessarily tiny

p-value. Indeed, some scientists seem to have a knack for picking just the

right sample size, and they report multiple studies with p-values just below

the α=0.05 criterion. Rather than indicating experimental skills, such results

should be a warning that something has gone wrong.

Figure 8 plots how p-values are distributed between 0 and 1 for a two-sample,

two-tailed, t-test based on sample sizes of n1=n2=50 with five standardized

effect sizes (Cohen’s δ). To better show the curves, the y-axis is on a log scale.

(The particular numbers on the y-axis reflect that probability was calculated for
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Figure 8 The distribution of p-values for different standardized effect sizes.
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1000 bins of the x-axis; different bins would produce different numbers, so the

relative order of the curves is what matters.) When the standardized effect size

is zero (no effect), the distribution of p-values is uniform. This may seem

surprising, but it directly follows from the way p-values relate to Type I error.

If the null hypothesis is true, then 5% of the p-values will be more extreme than

the α=0.05 significance criterion. Likewise, 6% of the p-values will be more

extreme than the α=0.06 criterion. More generally, the proportion of p-values

more extreme than criterion α is α itself, which happens only if the distribution

of p-values follows a uniform distribution.

As the effect size increases, large p-values become less common and p-values

closer to zero become more common. The vertical gray line indicates the

traditional criterion for significance, α=0.05. The area under each curve to the

left of this line is power for the respective experiment (or Type I error rate, when

the effect size is zero). The areas are 0.05, 0.17, 0.51, 0.84, and 0.98, respec-

tively, as the effect size increases.

A key feature of these curves is that except when the effect size is zero, more

p-values are close to zero than any other value. When effects are non-zero, tiny

p-values are more common than big p-values, and this holds true even in the

significance range (0, 0.05). Which p-value you actually get in any given

experiment is due to random sampling, but if you have high power, then you

will almost never get p-values close to the significance criterion. These proper-

ties of p-values form the basis of meta-analytical approaches such as p-curve

(Simonsohn, Nelson, & Simmons, 2014) and p-uniform (van Assen, van

Aert, & Wicherts, 2015).

When you plan an experiment, you do not know if you are in a high-power

or a low-power situation because you do not know the population standar-

dized effect size. However, if your experimental conclusions consistently

rely on p-values a bit below the criterion (say, 0.02–0.05), then you are

probably doing something wrong: you are ignoring relevant p-values that

are above the criterion (publication bias), you are stopping data collection

when the p-value drops below the criterion (optional stopping), you are

reporting weak statistical tests instead of more appropriate strong tests, or

you are drawing conclusions from exploratory work (filtering effects by the

p-value). The latter situation seems to be very common, but because of the

multiple testing problem, it can produce findings based on high Type I error

rates.

Take away message: Experiments measuring real effects tend to produce very

small p-values. If you consistently find p-values just below the significance

criterion, then you are probably doing something wrong. When planning an

experiment, you can only pick sample sizes that likely produce very small
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p-values (e.g., high power); you cannot plan for a p-value to be just below the

significance criterion.

9 Subjects and Trials Do Not Trade off Evenly

The Muller–Lyer and horizontal-vertical illusion data set in Figure 2 used

n=310 subjects who each ran m=8 trials for each of the six conditions (three

wing types and two orientations). When analyzing the data, we computed

a single mean score for each subject for each condition, so each observer

provides six (correlated) scores for the analysis. We could have analyzed the

data differently by considering trial as another factor to include in our analysis.

However, studies of perception are usually not interested in the trial-to-trial

variability and instead only care about the average performance of each subject,

which tends to cancel out the trial-to-trial variability. Implicitly, we can think of

each subject j at trial i having a score for each condition determined by

Xij=μþ αj þ �ij

where μ is the overall grand population mean across subjects, αj is the deviation

from the grand mean for subject j, and �ij is noise for a particular trial for

a particular subject.

The grand mean, μ, is an unknown fixed value. Subject-based deviation from

the grand mean, αj, varies across subjects who might be randomly selected for

the experiment. Assume the αj values in the subject population are distributed

normally as N 0; σαð Þ. The �ij term describes variability within a subject across

trials. We assume that it also follows a normal distribution, N 0; σ�ð Þ, which has
a different standard deviation than for variability across subjects.

If we follow common practice within studies of perception, then the mean of

a subject’s trials for a given condition becomes an individual score, Yj. If we are

just interested in a single condition, the set of Yj values are then fed into, say,

a one-sample t-test. The variability of a given Yj value is derived from the

standard error of the mean. Moreover, since variances add, the variability across

subjects will be

σ2 ¼ σ2α þ σ2�
m

Larger variability within a participant across trials, σ�, leads to more varia-

bility in mean scores across participants, but the contribution is divided by the

number of trials, m, so it may not have a big effect. When computing the

standard error of the mean across participants for the t-test, one uses the number

of subject scores, so

σX ¼
ffiffiffiffi
σ2
n

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2α
n þ σ2�

nm

q
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Notice that the σ� term is divided by nm so it contributes less variability than

a corresponding σα term. In the standard t-test analysis, any observed variability

is assumed to come from σα, which is not necessarily correct but can often be

close to accurate.

Suppose an experiment is being run that can gather m×n=100 trials. How

should the experimenter distribute trials across subjects to best test the mean?

There may be practical issues that limit how many trials each subject can

produce and how many subjects are available; however, from a statistical

perspective, it is almost always best to maximize the number of subjects

(e.g., n=100 and m=1). The following discussion provides an intuitive feel

for the issues by using simulated experiments (see the Appendix for how to

access the simulation code); for a more detailed discussion see Rouder and

Haaf (2018).

Figure 9a shows the result of simulated experiments that set (n, m) to be (100,

1), (50, 2), (20, 5), (10, 10), or (2, 50); thus m×n=100 for every condition. For

each subject, μ ¼ 0:5 and the simulation generated a value αj from a standard

normal distribution (σα ¼ 1). For each subject, the simulation generatedm trials

by drawing random values of �ij from a normal distribution with a mean of zero

and a standard deviation of σ� equal to 0.25, 0.5, 1, 2, or 4 (these different

conditions correspond to the lines in Figure 9a). By using the previously

presented equation for Xij, this process defines individual trial scores.
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Figure 9 Simulation results showing how the number of subjects or the number

of trials affects power. In (a), the product of the number of subjects and number

of trials is fixed at 100. So, an increase in the number of subjects also causes

a decrease in the number of trials for each subject. Nevertheless, power

increases with the number of subjects. This is true for every value of within-

subject variability, σ�. In (b), for a fixed sample size, n=30, power increases with

more trials. However, the effects are small unless σ�, the variability within

subjects, is large relative to σα ¼ 1, the variability between subjects.
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The mean subject scores for each simulated sample were analyzed using

a one-sample t-test with H0: μ ¼ 0. Each point in Figure 9a shows the propor-

tion of 10,000 simulated experiments that rejected the null (estimated power).

There are two notable effects. First, as σ� increases, power decreases. This

makes sense, because increased variability across trials generally produces

a larger standard error of the mean and thus a smaller t statistic. Second, for

a fixed value of σ�, the maximum power is always for n=100, m=1, which will

minimize the standard error of the mean. This makes sense because when

computing the standard error of the mean, the σ� term is divided by nm,

which always equals 100 trials for these simulated experiments. Thus, to

minimize standard error, a researcher should increase n at the expense of

decreasing m. An additional advantage of increasing n is that the t-test uses

degrees of freedom n−1, so a larger n reduces the t critical value needed to

determine statistical significance.

So it is not appropriate to just trade off subjects for trials. Everything else

equal, it is always best to maximize the number of subjects. However, subjects

are often more difficult to acquire than trials, and for a fixed number of subjects

there is an advantage to gathering more trials. Figure 9b shows the proportion of

10,000 new simulated experiments that reject the null. Each experiment used

n=30 subjects and varied the number of trials, m, and the value of σ� (as before,

σα ¼ 1 and μ ¼ 0:5). In general, larger m values give rise to higher estimated

power. The advantage is largest when σ� is big, which makes sense given the

contribution of σ� to the standard error of the mean. Increasing the number of

trials for a fixed number of subjects means that σ� is divided by a larger denomi-

nator and contributes a smaller amount of variability to the standard error.

Note that even with σ� ¼ 2, which is twice the size of σα, an increase of trials

from m=50 to m=1000 only leads to a power increase of 0.02. So increasing the

number of trials by a factor of 20 hardly benefits the researcher but greatly

bothers the subjects. There are situations where increasing the number of trials

has large effects. For σ� ¼ 1, increasingm from 1 to 20 produces a 0.26 increase

in power. Generally, unless σ� is much larger than σα, there is little gain in

gathering more than 20–50 trials per subject. Rouder and Haaf (2018) argue that

for many situations in cognition and perception, σ� is much larger than σα, and

thus it is often worthwhile to run a large number of trials.

This discussion supposes that scientists are interested in the mean behavior

across a population of people. However, a good argument can be made, espe-

cially for studies of perception where nearly every subject shows the same

pattern of behaviors, that psychologists should primarily focus on individual

behaviors (Smith & Little, 2018).When the focus is on measuring the properties

of an individual, more trials are always beneficial because n=1.
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9.1 An Example from Perception

Suppose you wanted to design a new experiment that explores the Muller–Lyer

and horizontal-vertical illusions (Figure 2) for lines 150 pixels long (compared

to the original experiment, where lines were 100 pixels long). The subject pool

at your university provides a single course credit for a student who participates

in a 30-minute experiment. Taking into account 5 minutes needed for instruc-

tions, handling consent forms, and debriefing, and taking into account another

5 minutes for breaks, you estimate that participants in your experiment have

about 20 minutes of experiment time, which is sufficient to go through roughly

100 trials. For each line length, there are six conditions (wings: outward,

inward, none and orientation: vertical, horizontal). Thus, you could run approxi-

mately 16 trials for each condition to have a total of 96 trials during a 30-minute

experimental session.

You want to use 16 credits for this experiment, and you can thus run either

n=16 participants in a 30-minute experiment (each participant earns 1

credit), or you can run n=8 participants in a 60-minute experiment with

more trials (each participant earns 2 credits). Since the start-up and debrief-

ing time is constant for both a short and a long experiment, participants in

the long experiment have roughly 45 minutes of experiment time (the longer

experiment does require 10 minutes for breaks), which corresponds to 225

trials. To ensure an equal number of trials for each condition, we round

down to 37 trials per condition for a total of 222 trials in the longer

experiment.

Which experiment gives more power? From the discussion in this section, we

know that an increase in the number of subjects has a bigger impact on power

than an increase in the number of trials. However, we do not have an equal trade-

off of trials and subjects in these two designs. The 60-minute experiment has

a total of 1776 trials across all 8 participants, while the 30-minute experiment

has a total of 1536 trials across all 16 participants. To explore which is the better

design, we create simulated experimental data (source code is available as

described in the Appendix).

From the data in the Muller–Lyer and horizontal-vertical illusion

experiment described in Figure 2, we compute the standard deviation of

each participant for the trials of each condition and estimate that σ�≈ 9.

We previously noted in Table 2 that the standard deviation of means across

subjects is approximately 8 for each condition. Using the variance formula

given earlier, we can compute (using m=8 for the experiment described in

Figure 2) that

σ2α ¼ σ2 � σ2�
m ¼ 82 � 92

8 ≈ 54
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so σα ≈ 7:3. The simulation generates 10,000 simulated experimental data sets

for each experimental design, and for each data set it runs the tests described in

Table 1. A simulated experiment is deemed successful only if it produces

significant outcomes for all the tests. The short experiment with 16 participants,

each running 16 trials for every condition has a predicted success rate of 0.99.

In contrast, the long experiment with 8 participants each running 37 trials for

every condition has a predicted success rate of 0.78. Thus, the short experiment,

with more subjects, is a better design, even though it has fewer trials overall and

uses the same number of university credits.

Take away message: It is not true that trials and subjects can be traded off. An

increase in the number of subjects has a bigger impact than an increase in the

number of trials. In general, you should consider the full characteristics of your

data collection and analysis design when planning sample sizes.

10 Replication Is a Poor Way to Control Type I Error

Some fields in psychology are suffering from a replication crisis (Gelman &

Loken, 2014; Open Science Collaboration, 2015), whereby new studies do not

support previously published experimental findings. In response to this crisis,

some people suggest that researchers should run replication studies before

reporting findings; in other cases, people express skepticism about a result

until it has been successfully replicated. There are good reasons to double-

check your result and to have a skeptical attitude; however, those reasons are not

related to the statistical properties of hypothesis testing.

When done properly, hypothesis testing is a decision-making process that

generates a Type I error (when the null is actually true) with a probability of

α (e.g., 0.05). Suppose you are in a situation where hypothesis testing can be

done properly, so you have (and want) this kind of Type I error control. You are

concerned about the replication crisis, so after finding a result that rejects the

null hypothesis (p<0.05), you decide to replicate the study to be sure that you

have not made a Type I error. If the replication study also rejects the null, you

will conclude there is an effect; if the replication fails, you will not conclude an

effect exists.

What is the Type I error rate for this decision-making process? If the null

hypothesis is true, then each test has a 0.05 probability of rejecting the null.

Since the two experiments involve independent samples, the probability that

both tests reject the null is the product of the probabilities 0.05×0.05=0.0025.

If controlling the Type I error is important for making your decision about

whether an effect exists, it seems it would be easier to just run one test with

α=0.0025.
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Moreover, for the same resources (e.g., total sample size) and equivalent

Type I error control, running one test is always better than running two tests

because the single test is more powerful than requiring two significant out-

comes. Consider a specific example of a one-sample t-test with null and alter-

native populations having μ0=0, μa=1, σ=2. If you run one study with n=50

and α=0.0025, the power of the test is 0.636. If you take two smaller samples

(n=25), increase the criterion to α=0.05, and require both tests to be significant

before concluding there is an effect, then you have used the same resources and

had the same Type I error rate as the single experiment. However, the power for

each individual test is 0.670, and the probability of both tests being significant

is the product of each test’s power, which is only 0.670×0.670=0.449. At least

with regard to power, the replication requirement is much less effective than

applying standard hypothesis testing with a smaller criterion (see Schimmack,

2012).

This observation does not mean that replication has no important role to

play in scientific investigations, only that the role should not be to control the

Type I error rate. There are broadly two situations where replication is useful.

First, the original study may have been exploratory rather than confirmatory.

As noted in an earlier section, hypothesis testing does not control the Type

I error rate for exploratory analyses. Thus, it might be prudent to run

a replication study with proper Type I error control. Second, you may want

to test the generality of the result with new methods (perhaps very small

changes, such as using a different computer or gathering subjects from

a different location). Examining generalizability requires that both studies

have high (estimated) power; otherwise, it will be difficult to distinguish

sampling variability from methodological variability. A mix of the two cases

is where you suspect improper reporting, improper analysis, or improper

sampling in an original study and you want the replication study to check

the accuracy of what was concluded.

Take away message: There may be good reasons to run replication studies,

but they do not include avoiding Type I errors.

11 Identifying Improper Methods through Excess Success

The previous section noted that replication is one way to check whether the

conclusion of a previous study might be the result of some kind of inappropriate

reporting, analysis, or sampling methods. Unfortunately, replication takes a lot

of work and sufficient expertise to be able to reproduce the conditions of the

original experiment. However, it turns out that many inappropriate methods

leave markers that identify their presence. Analysis of these markers can be
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done in a few hours and involves much less effort than replicating a study. The

main insight here is that multiple studies should succeed at a rate that reflects

their power. If studies with low or modest estimated power nevertheless are

reported to show a high rate of success, readers should suspect that something

has gone wrong in data collection, reporting, analyzing, or interpreting the

empirical findings.

A comforting example of this situation is the analyses in Francis (2012) and

Schimmack (2012) showing that a set of 10 studies (Bem, 2011) purporting to

find evidence that people could see into the future (precognition) seemed “too

good to be true.” Studies of precognition are rather odd, so it might be good to

give a description of Bem’s study 1. A computer screen showed two curtains

with one curtain occluding an unseen image. The participant’s task was to

choose the curtain that contained the picture. The act of choosing caused the

curtain to be removed, thereby displaying the image if the participant chose

correctly. Importantly, the computer program was structured so that the location

of the image was not determined (by a random number generator) until after the

participant made their response. The key statistical finding was that participants

identified the correct curtain with a rate of 0.531 when the image to be displayed

was erotic; this rate is significantly above the 0.5 rate that indicates chance

guessing. There was also a significant difference in proportion correct for erotic

and non-erotic images. Bem (2011) interpreted these findings as evidence that

participants had knowledge about the future content of the computer display for

some types of images. Other studies reported by Bem explored similar effects of

precognition on choosing pictures and on memorability of seen words.

Using the data from the reported studies, the estimated power of the studies

ranged from 0.37 to 0.89. Nine of the 10 studies rejected the null hypothesis;

however, given the estimated power values of the experiments, such an outcome

(or better) should happen with a probability of only 0.06 for samples of similar

size as those in the original studies. The estimated success rate is so low that it

seems strange that Bem (2011) reported results that are so successful, and

the reported excess success engenders skepticism rather than belief in the

effects. Better-powered experiments would not face this issue. If each of the

10 experiments had an (estimated) power of 0.9, then the probability of getting

9 (or more) significant results out of 10 experiments is 0.74. There are many

good reasons to not believe the findings in Bem (2011), as physics makes

a convincing argument that precognition is not possible; so it is good to see

that the reported statistics (by rejecting the null too often) are actually consistent

with that perspective.

However, the same reasoning applies to investigations that seem much more

plausible (Francis, 2014; Francis, Tanzman, & Matthews, 2014). One of my
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favorite papers from 2014 was by Firestone and Scholl (2014), who argued that

some studies of top-down effects on visual perception were subject to the “El

Greco fallacy.” The fallacy refers to the observation that the painter El Greco

drew figures unusually long and thin; some people speculated that his painting

style was due to severe astigmatism. With astigmatism, perceived shapes can be

stretched vertically, and it might follow that El Greco simply drew what he saw.

This theory is a fallacy because the astigmatism should also apply to the figures

in El Greco’s paintings; making them seem – to him – even more stretched out

than what he saw when looking at his models. Indeed, if El Greco painted

images to look like how he saw his models, then he would paint accurate figures

(both the model and the figure would look stretched out to El Greco, but they

would be the same in terms of actual shape).

Firestone and Scholl (2014) point out that several investigations of top-

down effects (e.g., action capabilities on perception and morality on lightness

perception, which are more fully described below) are subject to the El Greco

fallacy: subjects show a top-down influence on perception when they should

not. Their implication is that the presence of the reported effect must be due to

some other factor because the top-down influence should be involved in both

the perception and the matching judgment. I find the argument in Firestone

and Scholl (2014) to be very convincing. However, they then proceeded to

report five experimental results to demonstrate the presence of top-down

effects when they should not occur (the El Greco fallacy). Contrary to what

was intended, the empirical studies do not support their claim that many

reported top-down effects seem to be “demand characteristics,” whereby

subjects produce responses that they believe are implicitly requested by the

experimenter. Instead, the reported results seem too good to be true, so they do

not support any claims at all.

Experiment 1 was a replication of Stefanucci and Geuss (2009) that

reported a top-down effect on size judgments. Subjects who held their

arms out (by holding a long rod) estimated a doorway to be narrower

compared to subjects who held their arms next to their body (not holding

a rod). Table 3 reports the relevant statistics and estimated success prob-

abilities (power) for replication studies with the same sample sizes. If the

means and standard deviation estimated from Experiment 1 are accurate,

then future studies with the same sample size should reject the null hypoth-

esis around 65% of the time.

Experiment 2 was similar in design (changing only how the estimated size of

the doorway was produced) and result. Based on the reported means and

standard deviations, replication experiments with the same sample sizes are

expected to produce a significant outcome around 55% of the time.
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Experiment 3 was designed to remove the suspected demand characteristics

that contributed to the significant result produced by Experiment 2. Success for

this experiment was a nonsignificant finding that compared the results of

Experiment 3 (where subjects held a rod) and the results of the no-rod subjects

in Experiment 1. Statisticians warn that a nonsignificant result should not be

interpreted as supporting the null, but we follow the lead of Firestone and

Scholl (2014) here. Thus, the probability of success indicated in Table 3 for

Experiment 3 (second row) is the probability, 0.932, of a replication study not

rejecting the null hypothesis.

The tests for Experiments 1 and 3 involve a common data set (the no-rod

condition of Experiment 1). When estimating success for both experiments, we

consider this dependency by running 100,000 simulated experiments (using

the means, standard deviations, and sample sizes reported by the original

experiments) and measure how often the simulated data produce a significant

outcome for Experiment 1 and a nonsignificant outcome for Experiment 3

(source code is available as described in the Appendix). We call the proportion

of successes for both experiments the “Joint” probability of success. As Table 3

indicates, this probability is around 0.62.

Experiment 4 is a bit odd in that Firestone and Scholl (2014) used

a marginal result (p=0.088) as support that their experiment replicated

a finding in Banerjee, Chatterjee, and Sinha (2012) that thinking unethical

thoughts made the world seem darker. In estimating power for this kind of

experiment, I followed their lead and used a significance criterion of α=0.1.

The estimated power is just a bit over 0.5. Experiment 5 was similar to

Table 3 Statistical properties, hypotheses, and estimated probability of success
for the tests in the five experiments from Firestone and Scholl (2014)

Statistics
Supporting
hypotheses

Probability
of success

Experiments
1 and 3

n1=10, n2=10, t(18)=2.57,

p=0.019

n3=10, t(18)=0.43, p=0.67

μ1 6¼ μ2
μ1 = μ3
Joint

.644

.932

.619

Experiment 2 n1=10, n2=10, t(18)=2.33,
p=0.032

μ1 6¼ μ2 .560

Experiment 4 n1=41, n2=41, t(80)=1.73,
p=0.088

μ1 6¼ μ2 .522

Experiment 5 n1=44, n2=45, t(87)=2.13,
p=0.036

μ1 6¼ μ2 .551

All tests .100
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Experiment 4 but changed the reporting method; the estimated power is

around 0.55.

If we accept the analyses in Firestone and Scholl (2014) to be appropriate

(e.g., treat a marginal result as good enough and use a nonsignificant result to

accept the null), then these data seem very strange. The results all perfectly

match the ideas expressed by Firestone and Scholl (2014) even though random

sampling would be expected to make such success very rare. Most individual

experiments like these have only a bit more than a 50% chance of producing

a significant result, but Firestone and Scholl (2014) report success four out of

four times (and one anticipated null result). The probability of a set of experi-

ments like these being so successful is found by multiplying the estimated

success probabilities in Table 3 (using the Joint probability for Experiments 1

and 3). Experiments like these are predicted to have full success only 10% of the

time.

Given the low odds of success for experiments like these, I think it is

reasonable for readers to wonder how Firestone and Scholl (2014) got their

reported results. Luck is a possibility, but then we should hardly trust the

empirical results as being representative of their underlying populations.

Indeed, even if the reported results are representative of the populations,

replication studies using the same sample sizes are unlikely to be so successful.

More generally, the empirical results in Firestone and Scholl (2014) seem little

better than the precognition findings reported by Bem (2011).

It might seem that any set of five experiments would have these kinds of

problems, but there are two ways to avoid the criticism of excess success. First,

each experiment could have high (estimated) power. For example, if each

experiment has power of 0.95, then the probability of all five experiments

being successful is 0.955=0.77. When power is lower, the criticism can be

avoided by reporting experimental failures. If estimated power is 0.6, then

one expects an average of two failures from a set of five experiments. The

binomial distribution indicates that the probability of getting three or more

successes from five experiments is 0.68. Four or more successes from a set of

five such experiments has a probability 0.34. Five or more successes from a set

of five such experiments has a probability of only 0.078.

In hindsight, there are several oddities about the design and results reported

by Firestone and Scholl (2014). Experiments 1 and 2 do show the same kind of

results as previous work, but with half the number of subjects. Based on the

effect size reported in Stefanucci and Geuss (2009), the new experiments had

a slightly less than 50% chance of producing a significant result (see Table 4).

The sample sizes for Experiments 4 and 5 seem better, with estimated power

being around 0.8 (which some people treat as a target for experimental design).
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Even so, the probability of all experiments being successful (the product of the

success probabilities for all experiments) is around 0.15, based on the effect

sizes reported by previous studies. (Hedge’s g is a estimate of the standardized

effect size; it is similar to Cohen’s d.) It should have been clear before gathering

any data that the experiments planned by Firestone and Scholl (2014) had very

low odds of success. What is baffling is that this long-shot investigation

worked!

We can speculate about ways that the reported set of studies ends up showing

too much success. Optional stopping seems unlikely for Experiments 1–3,

because Firestone and Scholl (2014) seem to have used the same number of

subjects per condition as Stefanucci and Geuss (although Stefanucci and Geuss

collapsed data across two conditions and so ultimately used twice as many

subjects as Firestone and Scholl). Firestone and Scholl (2014) also used the

same methods and measures as Stefanucci and Geuss (2009), so it seems

unlikely that they combed through the data to find significant results. Given

that their experiments were rather unlikely to be successful, it seems that

Firestone and Scholl (2014) were either (un)lucky, or they ran variations of

the experiments several times and only reported the significant results (publica-

tion bias).

For Experiments 4 and 5, Firestone and Scholl (2014) used more than double

the number of subjects as Banerjee et al. (2012). Firestone and Scholl (2014) do

not provide any justification for the larger sample size, and it is curious that their

results were just below the significance criterion (a marginal criterion in the case

Table 4 Standardized effect sizes from previous studies and the sample sizes
used in the five experiments from Firestone and Scholl (2014); the success

probabilities for these experiments indicate that the full set had very low odds of
success

Standardized
effect sizes
(Hedge’s g)

Sample sizes
from Firestone
and Scholl
(2014)

Probability of
success

Experiments 1
and 3

g=0.914

g=0

n1=10, n2=10

n3=10

0.49

0.95

Experiment 2 g=0.914 n1=10, n2=10 0.49
Experiment 4 g=0.63 n1=41, n2=41 0.80
Experiment 5 g=0.63 n1=45, n2=44 0.84
Full set 0.15
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of Experiment 4). Results just below the criterion are consistent with optional

stopping, where subjects are added until the data produce the desired result. The

marginal reported result in Experiment 4 might imply that additional subjects

were run, produced a still larger p-value, and then were dropped from the report.

We do not know what really happened in the experiments reported by

Firestone and Scholl (2014). The previous speculations are just one set of

investigative approaches that could produce excess success. Even the authors

may not know what happened in their set of studies, but this lack of knowledge

does not engender much confidence from the perspective of a reader.

Suppose we were starting over and wanted to run a set of experiments

with an 80% chance of success for the entire set. We impose the traditional

α=0.05 criterion for each study. Working backward, we can compute that

each significant result needs to have a power of 0.96 so that their product

(and the 0.95 from the anticipated null result of Experiment 3) equals 0.806.

Table 5 shows that using effect sizes from Stefanucci and Geuss (2009) and

Banerjee et al. (2012), the full set of experiments requires a minimum of 454

subjects, which is more than double the 214 subjects used by Firestone and

Scholl (2014). It is worth keeping in mind that the original studies may have

overestimated the effect sizes, so these sample sizes should probably be

considered optimistic.

I want to emphasize that I think the basic ideas in Firestone and Scholl (2014)

are excellent. Their observations about the El Greco effect seem valid regardless

of the quality of their empirical studies. It is unfortunate that their reported

empirical results seem rather unbelievable and thereby detract from the paper

overall.

Table 5 Standardized effect sizes from previous studies and sample sizes that
would produce a 0.8 success probability for the five experiments in Firestone

and Scholl (2014)

Standardized
effect sizes
(Hedge’s g)

Minimum
sample sizes

Probability of
success

Experiments 1
and 3

g=0.914

g=0

n1=34, n2=34

n3=34

0.96

0.95

Experiment 2 g=0.914 n1=34, n2=34 0.96
Experiment 4 g=0.63 n1=71, n2=71 0.96
Experiment 5 g=0.63 n1=71, n2=71 0.96
Full set 0.806
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Take away message: Experimental results based on faulty uses of hypothesis

testing often leave a pattern of results that reveal the presence of the misuse.

Estimating the replication probability of a set of experiments can reveal that the

reported results seem too good to be true.

12 Preregistration May Be Useful but Is Not Necessary
for Good Science

We saw that Type I error control is strongly influenced by specifying the hypoth-

eses to be tested. Indeed, with such specification, scientists may end up using

conservative hypothesis tests. In contrast, without such specification, scientists

often engage in exploratory work, where Type I error control is hardly possible.

This observation suggests that whenever feasible, scientists should specify the

hypotheses that properly test their claims. I think this suggestion is not contro-

versial, and it seems to fit in with recent calls for researchers to preregister their

experiment, analysis methods, and data collection plans (Chambers, 2013;

Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012; Wolfe, 2013).

The idea of preregistration is that before actually running an experiment,

a scientist describes the total experiment plan in a place where the scientist

cannot subsequently alter it (e.g., the Open Science Framework or AsPredicted

.org). This experiment plan describes the stimuli, tasks, experimental methods,

measures, number of subjects and how they are sampled, the questions to be

investigated, and the data analysis plan. After writing down these details, the

experiment is run and any deviation from the preregistered plan is noted

(perhaps with justification). Proponents of preregistration note that it prevents

researchers from generating theoretical ideas or methods of data analysis

after looking at the data, which is sometimes called “hypothesizing after the

results are known,” HARKing (Kerr, 1998), or the “garden of forking paths”

(Gelman & Loken, 2014). With preregistration, it would also be obvious that

a researcher stopped data collection early or added observations (perhaps due to

optional stopping) or that various measures were combined in a way that is

different from what was originally planned. If preregistered documents are in

a public place, preregistration might also reduce the occurrence of publication

bias because there is a public notification about the researcher’s intention to run

the experiment. Along similar lines, journals might agree to publish preregis-

tered experiments prior to data collection, which would prevent reviewers and

editors from publishing only significant results.

These attributes all seem like good pragmatic reasons for scientists to practice

preregistration. However, I want to consider what should be inferred when

a researcher sticks to the preregistered plan. Does success for a preregistered

strategy lend some extra confidence in the results or in the theoretical
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conclusion? Does it increase belief in the process that produced the preregis-

tered experimental design? A consideration of two extremes suggests that it

does not.

Extreme case 1. Suppose for some topic a researcher proposes a standardized

effect size that was picked randomly from values between 0 and 1. The number

ends up being d=0.37, so the researcher plans an experiment and analysis (one-

sample t-test, n=79 subjects, which gives 90% power if the true effect corre-

sponds to d=0.37) and preregisters everything. The experiment is subsequently

run and finds the predicted effect. Whether or not the population truly has an

effect, surely such an experimental outcome does not actually validate the

process by which the hypothesis was generated (a random number generator).

For the experiment to validate the prediction of the hypothesis (not just the

hypothesis itself), there needs to be some justification for the theory/process that

generated the prediction. Preregistration by itself does not, and cannot, provide

such justification; so preregistration seems rather silly for unjustified experi-

mental designs.

Extreme case 2. Suppose a researcher generates a hypothesis by deriving an

effect size (d=0.37) from a quantitative theory that has previously been pub-

lished in the literature. The researcher preregisters this hypothesis and the

corresponding experimental design (one-sample t-test, n=79 subjects, which

gives 90% power if the true effect corresponds to d=0.37). The subsequent

experiment finds the predicted difference. Such an experimental finding may be

interpreted as validation of the hypothesis and of the quantitative theory, but it

does not seem that preregistration has anything to do with such validation. Since

the theory has previously been published, other scientists could follow the steps

of the researcher and derive the very same predicted effect size and thereby

conclude that the experimental design was appropriate. In a situation such as

this, it seems unnecessary to preregister the experimental design because

describing its justification achieves the same ends. (Or, other scientists could

find an error in the prediction or design, which would undermine the conclu-

sions. Preregistration does not protect against this possibility.)

Most research situations are neither of these extremes, but researchers in

psychology often design experiments based both on vague ideas, intuition, or

curiosity and on well-defined past experimental results or quantitative theories.

It is impossible to gauge the quality of the experimental design for the vague

parts, and preregistration does not change that situation. For those parts of

the predicted hypotheses (and methods and measures) that are quantitatively

derived from existing theory or knowledge, it is possible to gauge the quality

of the experiment from readily available information; preregistration does not

add anything to the quality of the design.
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Preregistration does force researchers to commit to making a real prediction

and then creating experiments and specifying analyses that properly test that

prediction. This type of prediction and experimental design is a laudable goal.

But such a goal does not make sense if researchers do not have any hope of

achieving it. When researchers design their experiments based on vague ideas,

they are doing exploratory work, and it is inappropriate to ask (or even to invite)

such researchers to make predictions. If forced to do so, researchers may

generate some predictions, but those predictions will not be meaningful with

regard to the process by which they were generated. At best, such studies would

provide information about a researcher’s intuition, but scientists are generally

not interested in whether researchers can generate good guesses. They run

studies to test aspects of theoretical claims.

At a practical level, many researchers who are motivated to preregister

their hypotheses may quickly realize that they cannot do it, because their

theories are not sufficiently precise. A field that insists on preregistration may

find that it trades a “replication crisis” for a “theory crisis.” That might be

a good discovery for those researchers and for the broader field, and it may

lead to better science in the long term. Likewise, preregistration does deal

with some potential problems, such as optional stopping, dropping unsuc-

cessful conditions, and HARKing. But these are exactly the issues that are

handled by good justification for experimental design. Without good justifi-

cation for experimental design, researchers are engaged in exploratory work,

and then practices such as HARKing make sense, along with an appropriate

cautionary interpretation.

In summary, writing down the justifications for an experimental design may

be a good activity for scientists to self-check the quality of their planned

experiment. Moreover, when attempting to be so precise, it may often be the

case that scientists learn that part of their work is exploratory. Recognizing the

exploratory parts of research can help guide how scientists interpret and present

their empirical findings. However, justification for an experimental design

should be part of a regular scientific report about the experiment; so there

seems to be no additional advantage to publishing the justification in advance

as a preregistration.

Take away message: The benefits of preregistration should be part of normal

scientific practice of justifying your experimental design. If you cannot provide

such justification, then preregistration does not help.

13 Hypothesis Testing Is a Variation of Signal Detection Theory

Many judgments about perception involve decision making under noise. An

often useful analysis of such a situation involves the application of Signal
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Detection Theory (Macmillan & Creelman, 1991). Readers already familiar

with Signal Detection Theory can skip ahead to Section 13.1, where the

approach is used to clarify properties of hypothesis testing.

The left side of Figure 10 shows stimuli in an experiment (Francis & Neath,

2018) that can be evaluated with a signal detection analysis. On each experi-

mental trial, the participant is shown a field with many randomly placed white

dots. On some trials, there is a target (signal) that consists of an additional set

of 10 equally spaced dots forming a straight line oriented 45 degrees left of

vertical. The line is randomly placed among the other dots. The participant’s

task on each trial is to determine if the display contains the target (signal-and-

noise) or the target is absent from the display (noise-alone). The right side of

Figure 10 shows the experimental feedback provided to the participant after

making their response. In addition to text feedback, if the target is present, then

a line connects the 10 target dots. The response and feedback combinations are

labeled for each row. A “Hit” corresponds to a situation where the target is

present and the participant reports it is present. A “Miss” occurs when the target

Stimulus Feedback

False
alarm

Hit

Correct
rejection

Miss

Figure 10 Stimuli and feedback in a signal detection experiment. The different

rows indicate the four possible combinations of stimulus and response

feedback.
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is present but the participant mistakenly says it is absent. A “Correct rejection”

is when the target is absent and the participant reports it is absent. Finally,

a “False alarm” happens when the target is absent but the participant mistakenly

reports it is present.

It might not seem like it at first, but the information that determines how well

a participant can discriminate a target present from a target absent stimulus is

the same kind of information used in hypothesis testing. In Signal Detection

Theory, we suppose that a participant computes a value for each stimulus that, in

some way, measures the “presence of a target.” We do not know the details of

this computation for the stimuli in Figure 10, nor do we know the units of

measurement. Regardless of the details, different stimuli will produce different

values because different arrangements of random dots can mask, highlight, or

mimic the presence of the target (c.f., the stimuli in Figure 10). Signal Detection

Theory supposes that the computed value is normally distributed across differ-

ent stimuli. When the target is present, the mean of this distribution will be

larger than when the target is absent. Figure 11a schematizes how this measure

might be distributed for target absent and target present situations. Each curve

has a distribution of values for the presence of a target because different stimuli

mask or emulate a target to different degrees.

Signal Detection Theory supposes that viewing a stimulus is equivalent to

taking a random sample from one of the distributions. In the theory, the sampled

value is compared to a fixed classification criterion. If the sampled value is

(a)
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Target present

Target present measure
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Target absent

Target present measure
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Figure 11 Hypothetical distributions for the target present measure under

conditions where the target is actually present (dashed curve) or absent (solid

curve). In (b) and (c), the vertical black line indicates a decision criterion.

A sampled value above the criterion is interpreted as indicating the target is

present, while a sampled value below the criterion is interpreted as indicating

the target is absent. Figure 11b shows the areas under the curve of the target

present condition that correspond to the miss and hit rates. Figure 11c shows the

areas under the curve of the target absent condition that correspond to the

correct rejection and false alarm rates.
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larger than the criterion, the stimulus is classified as “target present.” If the

sampled value is smaller than the criterion, the stimulus is classified as “target

absent.” Figures 11b and 11c show how the area under each curve corresponds

to hits, misses, correct rejections, and false alarms for the target present and

target absent situations.

To understand why Signal Detection Theory is useful for studies of percep-

tion, we need to better understand how decisions are related to the overlap of the

distributions. Figure 12a schematizes distributions for the signal-and-noise

situation and the noise-alone situation. Here, the noise-alone distribution has

a mean value μNA=17, while the signal-and-noise distribution has a mean value

μSN=30. Both distributions have a standard deviation of σ=5, which indicates

how random noise makes a measurement differ from the mean of each distribu-

tion. An observed measurement involves drawing a random sample from one or

the other distribution.

Suppose you get a measurement of unknown origin and you want to deter-

mine whether it came from the signal-and-noise or the noise-alone distribution.

For the distributions in Figure 12a, it should be clear that a measurement value

above 40 almost surely came from the signal-and-noise distribution, while

a measurement value below 10 almost surely came from the noise-alone

distribution. Measurement values between these extremes could have come

from either distribution, but values between 23.5 and 40 are more common

for the signal-and-noise distribution than for the noise-alone distribution.

Similarly, values between 10 and 23.5 are more common for the noise-alone

distribution than for the signal-and-noise distribution. If the two conditions are

equally probable, then a good strategy might be to classify a given measurement

according to which distribution has the higher probability density for that

measurement. This would suggest that any measurement above the intersection

point of the distributions (23.5) would be classified as from the signal-and-noise
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Figure 12 Three examples of hypothetical signal-and-noise and noise-alone

distributions.
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distribution, while any measurement below the criterion of 23.5 would be

classified as from the noise-alone distribution.

This strategy works fairly well for the distributions in Figure 12a, but

mistakes are inevitable. Sometimes the noise-alone distribution will produce

measurement values bigger than 23.5 and sometimes the signal-and-noise

distribution will produce measurement values smaller than 23.5. When making

decisions in noise, there is no way to avoid making some errors. In general, the

ability to make good decisions depends on the separation of the two distribu-

tions. For example, Figure 12b shows distributions with more overlap because

the signal-and-noise distribution now has a mean of μSN=20. Even with

a criterion placed at the intersection of the distributions (18.5), many classifica-

tion mistakes will be made because the two distributions generate such similar

values.

Figure 12c shows distributions with the same mean values of Figure 12b but

with a smaller standard deviation (σ =1). With less noise, it should be possible

to fairly well classify a measurement as coming from the signal-and-noise

distribution or from the noise-alone distribution. When making decisions in

noise, the standardized separation of the distributions can be described by the

signal-to-noise ratio:

d
0 ¼ μSN�μNA

σ

For the pairs of distributions in Figures 12a–c, we have d
0 ¼ 2:6; d

0 ¼ 0:6, and

d
0 ¼ 3:0, respectively.

So, if we know the properties of the distributions, then d
0
is a convenient

summary of how well a signal-and-noise (e.g., target present) condition can be

distinguished from a noise-alone (e.g., target absent) condition. Unfortunately,

in studies of human perception, the distributions cannot be directly observed,

and even the unit of the target/signal present measure is unknowable. Despite

these challenges, Signal Detection Theory allows scientists to estimate d
0
for

a pair of distributions. Across multiple trials of an experiment with equal

proportions of target present and absent conditions, an observer will produce

a proportion of hits (H), misses (M), false alarms (FA), and correct rejections

(CR). The experimenter creates the stimuli and thus knows what kind of

stimulus is presented on each trial and also knows how to classify the observer’s

response on each trial. Traditionally, the calculations for d
0
are described using

hits and false alarms, but it is more intuitive to use misses and correct rejections.

We will show how to transform the formulas to the more traditional version

later.

To compute d
0
from response proportions, we first identify the relative

position of the criterion for the signal-and-noise distribution. We do this by
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finding the percentile score for the rate of misses on a standard (mean of zero

and standard deviation of 1) normal distribution. The percentile of a distribution

is the score that divides the distribution into a bottom portion with an area under

the curve equal to the given proportion and a top portion being one minus the

given proportion. For example (using the distributions in Figure 12b), if the

miss rate is 0.21, the percentile is −0.806. Next, we identify the relative position
of the criterion for the noise-alone distribution. We do this by finding the

percentile score for the rate of correct rejections on a standard normal distribu-

tion. For example, if the correct rejection rate is 0.42, then the percentile is

−0.202; d
0
is simply the difference of these percentiles:

d
0 ¼ Percentile CRð Þ � Percentile Mð Þ ¼ 0:604

which is very close to the 0.6 that we computed earlier for Figure 12b using the

formula for means and standard deviation. The small difference is due to

rounding in the proportions. The percentile formula works because each

percentile is based on an (unknown) fixed decision criterion value. If the

signal-alone and signal-and-noise distributions were the same, then the miss

rate and the correct rejection rate would be the same. Within the theory, these

rates are different only when the signal-and-noise distribution is shifted to the

right of the noise-alone distribution. The magnitude of the shift is reflected by

the difference in the rates, and the percentile calculation tells us exactly how

large the shift must be to produce the rate difference. Thus, critical informa-

tion about the distributions can be computed from the miss and correct

rejection rates, even when the criterion, means, and standard deviation are

unknown.

Traditionally, d
0
is computed using the hit and false alarm rates. Although less

intuitive than using miss and correct rejection rates, this approach is mathema-

tically equivalent because of a simple relationship between percentiles. Namely,

since hits and misses make up all possibilities for the signal-and-noise distribu-

tion, it follows that

Percentile Mð Þ ¼ �Percentile Hð Þ
Likewise, correct rejections and false alarms make up all possibilities for the

noise-alone distributions, so

Percentile CRð Þ ¼ �Percentile FAð Þ
Plugging these alternative percentile terms in the d

0
equation presented earlier

and rearranging terms give the typical formula used in Signal Detection Theory:

d
0 ¼ Percentile Hð Þ � Percentile FAð Þ
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Typically, studies of perception compute d
0
to estimate how distinctly the brain

represents different types of information (noise-alone versus signal-and-noise).

Importantly, the calculation of d
0
is unrelated to the value used for the

decision criterion. Even though a more liberal criterion might lead to a higher

hit rate, it will also generate a higher false alarm rate; together they will

correspond to the same value of d
0
. If we arbitrarily suppose that the mean of

the noise-alone distribution is zero, then we can compute the criterion value in

standard units as

Criterion ¼ �Percentile FAð Þ
Because this value depends on an arbitrary assumption about the mean,

researchers instead usually calculate a term that represents bias. When the

signal is present as frequently as it is absent, the best criterion (in the sense

that it maximizes percentage correct) is at the intersection of the two

distributions:

Criterion ¼ d
0

2

Bias is measured relative to this optimal criterion:

Bias ¼ �Percentile FAð Þ � d
0

2

Somewhat confusingly, this bias term is often called C to indicate the criterion,

but it is not actually the criterion that is used to make decisions. A liberal

criterion (below the best criterion) produces more hits and false alarms and

a negative bias value, while a conservative criterion (above the best criterion)

produces fewer hits and false alarms and a positive bias value.

13.1 Signal Detection Theory and Hypothesis Testing

In hypothesis testing, d
0
is used in two ways. The first use of d

0
is for the

population standardized effect size. The standardized effect size Cohen’s δ is

simply a d
0
that describes the standardized separation of population distribu-

tions. For example, it is well known that the average American male is about 14

centimeters (6 inches) taller than the average American female. The standard

deviation of heights is around 15.4 centimeters, so d
0 ¼ 0:9. Figure 13a shows

the population distributions. Now, suppose you are given a height and asked to

classify it as corresponding to a male or a female (which distribution is signal-

and-noise and which is noise-alone is rather arbitrary in this situation). Your

intuition about people’s height should tell you that for a broad range of values,

knowing only the measured height of a person is not especially informative

about whether they are male or female. Indeed, it is fairly easy to deduce that (if
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males and females are equally common) a criterion at the intersection of the

distributions produces a misclassification (male for female or female for male)

with a probability of 0.32 (any other criterion does even worse). The bad news is

that the d
0
value for height differences between males and females is quite large

compared to many phenomena in psychology. As rules of thumb, Cohen (1988)

characterized δ values of 0.2, 0.5, and 0.8 as indicating small, medium, and large

effect sizes, respectively. Using the best possible criterion, misclassification

errors for these values are 0.46, 0.40, and 0.34, respectively.

Thus, for many of the phenomena commonly investigated in psychology, it is

very challenging to identify which distribution produced a given measurement.

However, all is not lost because instead of focusing on individual measure-

ments, we can investigate the properties of the mean of measurements. The

advantage of working with the mean is that the variability of the distribution of

mean values (known as the sampling distribution) is affected by the sample size,

n. The standard deviation of the sampling distribution of the mean is called the

standard error of the mean, and it can be estimated from a sample standard

deviation, s, as

sX ¼ sffiffi
n

p

Figures 13b and 13c show the sampling distributions of the means for

samples of size n=10 and n=100, respectively. Notice that the sampling dis-

tributions for the male and female means have much less overlap (d
0 ¼ 2:8 and

d
0 ¼ 9:0) than the population distributions. Thus, misclassification probabilities

for means are rather small. For samples of size n=10, the misclassification

probability is 0.08. For samples of size n=100, the misclassification probability

is nearly zero.
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Figure 13 Distributions of heights for US males and US females. (a) The

population distributions have a separation of d
0 ¼ 0:9. (b) For sampling

distributions of means from samples of n=10, d
0 ¼ 2:8. (c) For sampling

distributions of means from samples of n=100, d
0 ¼ 9:0.
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Hypothesis testing leverages the small standard deviation of the sam-

pling distribution so that d
0
is in a range where classification of effects (or not)

can be discriminated. This is the second use of d
0
in hypothesis testing. The

t statistic that is used for one-sample and two-sample tests of means simply

estimates the d
0
of the sampling distributions. For a one-sample t-test the

formula is

t ¼ X � μ
s
X

where X is an estimate of the signal-and-noise distribution mean from the

sample data and μ is the mean of the noise-alone distribution, as specified in

the null hypothesis. The situation is similar for two-sample t-tests (Herzog,

Francis, & Clarke, in press).

To actually make a decision, we have to specify a decision criterion. If

we know the properties of the distributions, then the intersection of dis-

tributions is a good choice. However, in hypothesis testing we can only

estimate the signal-and-noise distribution, so we cannot use that estimate to

determine the criterion. Since bigger d
0
values correspond to easier classifica-

tions, if t is big enough, then we conclude that we are in a situation where it

should be easy to find a signal if it exists. We have a “significant” result.

Roughly speaking, psychology uses a criterion value of 2; while physics opts

for a criterion value of 5. More precisely, what counts as “big enough” for the

t value is determined by an acceptable false alarm rate (Type I error). We set the

criterion so that we (mistakenly) conclude signal-and-noise when the measure-

ment actually came from the noise-alone distribution only at the specified rate

(e.g., 0.05).

Take away message: Hypothesis testing is an application of Signal Detection

Theory as applied to sampling distributions. The criterion for hypothesis testing

is established to control the Type I error rate (false alarm rate).

14 Using Signal Detection Theory to Analyze
Reported Results of Hypothesis Testing

We can use Signal Detection Theory to evaluate bias of the hypothesis testing

approach. We know the false alarm rate in an hypothesis test because we set it as

the Type I error rate (e.g., 0.05). The hit rate is the power of the experiment.

Figure 14 plots bias as a function of power for three values of Type I error. The

horizontal gray line indicates no bias. We see that for all of these Type I error

rates, hypothesis testing is biased toward the noise-alone (null hypothesis)

distribution, except for very high power values. Technically, we do not accept

the null hypothesis (noise-alone distribution), but that is often the default

position of skeptical scientists. It should not be surprising that hypothesis
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testing is biased against the alternative because the hypothesis-testing proce-

dure sets a criterion to minimize false alarms (Type I errors) regardless of the

unknown d
0
value. It is only when d

0
is so large that power is greater than 1− α

that the test becomes biased toward the alternative hypothesis.

You could do the same kind of analysis to compute d
0
from the Type I error

rate and power. However, the calculation would simply report the t value (for

a one-tailed test) that produces the given power value. Remember, the t value we

use in an hypothesis test is just the d
0
of the sampling distributions.

This discussion is mostly for pedagogical purposes. We cannot, for example,

adjust the criterion to reduce bias in hypothesis testing because we do not know

the true effect size for the alternative hypothesis. We should note, however, that

Signal Detection Theory emphasizes that the choice of the criterion always

involves a trade-off between hits and false alarms. For example, recent calls

(Benjamin et al., 2018) to reduce the desired Type I error from the typical 0.05 to

0.005 should have the benefit of decreasing Type I errors (false alarms), but at

the cost of decreasing power (hits).

Take away message: In terms of Signal Detection Theory, hypothesis

testing tends to be biased against the alternative hypothesis. This bias

seems appropriate given that the goal of hypothesis testing is to fix the

rate of Type I errors.
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Figure 14 The bias of hypothesis testing as a function of power for three Type

I error rates. In most cases a hypothesis test is biased against the alternative

hypothesis.
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15 Conclusions

Hypothesis testing is a common method of analyzing experimental data. When

everything works well, it is easy to understand the appeal. Being able to control

the Type I error rate is a good thing, and the methods are (generally) easy to apply.

However, we have seen that deviating just a bit from the textbook examples

can cause serious problems with hypothesis-testing approaches. Sampling,

analysis strategies, reporting, and measurement issues can cause hypothesis

testing to produce much higher Type I error rates than might be expected. At the

same time, some standard hypothesis-testing strategies produce Type I error

rates much lower than what is intended, thereby making it difficult for scientists

to convince their peers about a new discovery. To reiterate some of the main

points of the text, Table 6 recapitulates the “take away” messages from the

earlier sections.

Table 6 Summary of the take away messages from this Element

Topic Take away message

Basics When done properly, hypothesis testing controls the Type
I error rate and the calculations are fairly easy to
perform.

Robustness The t-test is quite robust to deviations from some of its
assumptions; but if you have unequal sample sizes, you
should use Welch’s test rather than a standard t-test.

Optional stopping Unless you are in a situation where you can fix the sample
size, hypothesis testing does not necessarily do a good
job controlling the Type I error rate. Unfortunately, it is
difficult to avoid optional stopping.

Conservative
ANOVA

If your conclusion requires multiple test outcomes, then
the Type I error rate for your conclusion might be much
smaller than the criterion you set for any individual
test.

Multiple testing Multi-way ANOVA designs generally do a poor job
controlling the Type I error rate for exploratory
investigations that look for some significant results out
of many tests.

Power for all tests Power analyses and sample size determinations need to
consider the full set of tests that are relevant to the
conclusions. Not including the full set can lead to
dramatically underpowered experiments.

Planning p-value Experiments measuring real effects tend to produce very
small p-values. If you consistently find p-values just
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The reader might now want this section to explain how to solve the chal-

lenges that arise from these messages. Unfortunately, the author does not have

straightforward solutions. Some problems (such as optional stopping and multi-

ple testing) are more easily handled with Bayesian methods, but these methods

introduce new challenges (such as picking a prior distribution or ways of

comparing models).

Table 6 (cont.)

Topic Take away message

below the significance criterion, then you are probably
doing something wrong. When planning an
experiment, you can only pick sample sizes that likely
produce very small p-values (e.g., high power); you
cannot plan for a p-value to be just below the
significance criterion.

Subjects and trials It is not true that trials and subjects can be traded off. An
increase in the number of subjects has a bigger impact
than an increase in the number of trials. In general, you
should consider the full characteristics of your data
collection and analysis design when planning sample
sizes.

Replication and
Type I error

There may be good reasons to run replication studies, but
they do not include avoiding Type I errors.

Excess success Experimental results based on faulty uses of hypothesis
testing often leave a pattern of results that reveals the
presence of the misuse. Estimating replication
probability of a set of experiments can reveal that the
reported results seem too good to be true.

Preregistration The benefits of preregistration should be part of normal
scientific practice of justifying your experimental
design. If you cannot provide such justification, then
preregistration does not help.

Signal Detection
Theory

Hypothesis testing is an application of Signal Detection
Theory as applied to sampling distributions. The
criterion for hypothesis testing is established to control
the Type I error rate (false alarm rate).

Signal Detection
Theory analysis
of hypothesis
testing

In terms of Signal Detection Theory, hypothesis testing
tends to be biased against the alternative hypothesis.
This bias seems appropriate given that the goal of
hypothesis testing is to fix the rate of Type I errors.
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Perhaps the best advice is for scientists to remember that statistical results

are not the goal of empirical studies. Rather, the goal of scientists is to explain

how things work by measuring and characterizing mechanisms. At best, statis-

tics can only direct us toward models and insights that help clarify the mechan-

isms that underlie the phenomena we study. Without an understanding of

mechanisms, scientists will be dabbling with phenomena that they do not really

understand.
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Appendix

Most of the data sets and software scripts (R core team, 2017) for the reported

analyses are available at the Open Science Framework (https://osf.io/pzc4n/).

This Appendix briefly describes the available files and explains how they are

used.

A.1 Muller–Lyer and Horizontal-Vertical Illusion Data Set

Each trial from the 310 participants is in the file MLHVTBT.csv. Each

participant is identified by a unique “SUBJECT_ID.” In addition to the

conditions described in the Element text, there were also judgments where

the comparison line length was 150 pixels. In the data file, this variable is

called “TargetLength.”

A.2 Analysis of Muller–Lyer Data

The R script file IllusionAnalysis.R reads in the data file and creates a data frame

consisting of only the experimental trials with 100-pixel-long comparison

stimuli (practice and demographic trials are ignored). For each participant, the

code computes the mean across trials for each stimulus condition. It then

computes means, standard deviations, and correlations across participants for

the various wing conditions for horizontal and vertical trials. These values are

printed on the console window.

To produce the analysis in Section 2.1, the code runs a paired t-test between

the outward wings and inward wings for the horizontal orientation. The result of

the test is printed on the console window.

For the correlation analysis in Section 4.1, the code first runs a significance

test for the correlation between the outward wings and inward wings for the

horizontal orientation using the entire data set. The result is printed to the

console. Next, the code simulates an optional stopping approach that takes

a subset of the data and tests for a significant correlation. The loop starts with

the first 30 participants and gradually increases the sample size until it includes

the entire data set. As discussed in Section 4.1, the smallest such subset that

produces a significant result is for n=53. The loop prints the correlation and

corresponding p-value for each subset of data to the console.

A.3 Robustness of t-test Simulations

The robustness simulations in Section 3 were generated by code in the online

textbook of Francis (2018). The simulation is online at https://introstatsonline
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.com/chapters/chapter12/homogeneity_variance_sim.shtml, but access is

restricted to those who have purchased a registration code and set up an account.

A.4 Multiple Testing in ANOVA

The file ANOVATypeIErrorRate.R generates null data to run 10,000 simulated

2×2 independent ANOVAs. Each test looks for either main effect or an

interaction. The result printed to the console reports the Type I error rate for

each test (around 0.05) and the Type I error rate for at least one significant

result across the three tests (around 0.14). The Element reports these results in

Section 6.

The file ANOVATypeIErrorRate222.R runs a similar analysis for a 2×2×2

ANOVA. The results are reported in Section 6.

The file ANOVAFactors.R produces the data plotted in Figure 6.

A.5 Power for All Tests

The power analysis in Section 7.1 for the Muller–Lyer and vertical-

horizontal illusion experiment can be reproduced with file IllusionsPower.

R. The console reports the power of each test and the power for the

conjunction of all specified tests. Change the value of the standard devia-

tion (variable SD in the code) to 16 to produce the corresponding curve in

Figure 7.

A.6 Distribution of p-values

The file pValues.R computes the distribution of p-values, as discussed in

Section 8 and displayed in Figure 8.

A.7 Trials and Subjects

The file SubjectsVsTrials.R produces simulation results like those in Figure 9a.

The file SubjectsVsTrials2.R produces simulation results like those in

Figure 9b. The file PowerSubjectsVsTrials.R generates the simulation results

reported in Section 9.1 that demonstrate an advantage of more participants over

more trials-per-participant for a replication study of the Muller–Lyer and

horizontal-vertical illusion experiment.

A.8 Test for Excess Success

Most of the power calculations (Tables 3, 4, and 5) were done with the “pwr”

library in R (Champely et al., 2018). The file TESAnalysis.xls provides

a summary of intermediate calculations. For Table 3, experiments 1 and 3 had
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multiple tests and comparisons, so power was estimated with simulated experi-

ments. The file TestExcessSuccessExp1-3.R repeats this analysis.

A.9 Signal Detection Theory Analysis of Bias
in Hypothesis Testing

The data to produce Figure 14 is generated by thefile SDTofHypothesisTesting.R.
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