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Abstract 

Doerrfeld, Sebanz and Shiffrar (2012) reported evidence that perception is shaped by what 

can be accomplished with other people. Their conclusion was based on consistent findings 

from four experiments. However, given the effect sizes and sample sizes of the 

experiments, the probability that all four experiments would reject the null hypothesis is 

only 0.082 if the effect magnitude is as reported and the experiments were run properly. 

This low probability suggests that the experiment set contains publication bias and thereby 

does not provide valid scientific information about the phenomena. Scientists interested in 

perception and joint actions will need to run new unbiased experiments.  
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Doerrfeld, Sebanz and Shiffrar (2012) tested whether anticipated effort alters perceptual 

experience by having individuals judge the weight of a filled basket when they intended to 

lift the basket either alone or with another person. Four experiments consistently rejected 

the null hypothesis that the weight judgments were the same across the two intention 

conditions. The experimental results were interpreted as strong evidence for the validity of 

the result and confirmation of a theoretical hypothesis that perception is shaped by what can 

be accomplished with other people.  

 However, experiments should only reject the null hypothesis at a rate that reflects 

the power of the experiments. When experiments have low or moderate experimental 

power, random sampling means that some experiments should not reject the null hypothesis 

even if the reported effect is true (Francis, 2012a,b,d, in press; Ioannidis & Trikalinos, 

2007; Schimmack, in press). The absence of expected null findings indicates publication 

bias, which makes it impossible to judge whether the reported experiments are valid. As 

shown below, such is the case for the findings in Doerrfeld et al. (2012). 

 Table 1 shows the key statistical properties of the four experiments. The fourth 

column reports a measure of effect size (Hedges g) for each experiment.  The effect size for 

Study 1 might seem to differ from the effect sizes of the other three studies, but as Figure 1 

shows, the difference is not unusual when considering the range of a 95% confidence 

interval around the effect size for each experiment. In fact, the standard deviation across the 

observed effect sizes (0.237) is close to the theoretically predicted value (0.195) based on 

pooling the effect sizes (Hedges & Olkin, 1985). Given the statistical properties of the 

effect sizes and given that the experiments used very similar methods and measures, it is 

appropriate to pool the effect sizes.  A meta-analysis that gives more emphasis to 
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experiments with larger sample sizes, by weighting each experimental effect size by its 

inverse variance, (Hedges & Olkin, 1985), computes 0.865, CI95=(0.483, 1.25), as the best 

estimate of the true effect size. 

 The last column of Table 1 reports experimental power, which is the probability that 

an experiment rejects the null hypothesis, for the pooled effect size. The sum of the power 

values, 2.24, is the expected number of times experiments like those in Doerrfeld et al. 

(2012) would reject the null hypothesis (Ioannidis & Trikalinos, 2007). Thus, it is 

surprising that four experiments rejected the null hypothesis. The probability that four out 

of four experiments like these would reject the null hypothesis is the product of the power 

values, which is 0.082. If they were run properly and reported fully, the experimental 

outcomes in Doerrfeld et al. (2012) are quite unusual for the reported effect sizes and 

sample sizes. The low probability of the experiment set is below the 0.1 criterion 

commonly used to establish publication bias (Begg & Mazumdar, 1994; Ioannidis & 

Trikalinos, 2007; Sterne, Gavaghan & Egger, 2000).  

Such bias can occur in a variety of ways. One approach is the suppression of non-

supportive findings, which is often described as a file-drawer problem, (Rosenthal, 1984); 

and this kind of bias can dramatically alter the magnitude of a reported effect (Lane & 

Dunlap, 1978). It may seem unlikely that researchers would deliberately suppress proper 

experiments that did not show the effect, but there is sometimes a tendency to dismiss 

negative or null findings as “pilot studies.”  

 Perhaps even more common are mistakes in sampling and analysis that inflate the 

rejection rate of the null hypothesis (Simmons, Nelson & Simonsohn, 2011; John, 

Loewenstein & Prelec, 2012). For example, a common sampling approach starts by 
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gathering an intermediate set of data and running a statistical analysis to see if the effect of 

interest is present. If the effect is found, the experiment stops and the finding is reported; 

but if the effect is not found, additional subjects are recruited and their data is added to the 

previous set for a new analysis. The cycle of gathering data and testing repeats until finding 

the effect of interest or the experimenter gives up. Such “data peeking” dramatically 

inflates the Type I error rate (Strube, 2006), so the test conclusions cannot be trusted.   

There is no statistical marker that convincingly reveals the use of a data peeking 

strategy, but it seems generally consistent with the pattern of results in Doerrfeld et al. 

(2012). In every experiment a notable analytical investigation (not necessarily those in 

Table 1) produced a p value that was just below the criterion 0.05 value. Study 1 and 2b 

produced the effects described in Table 1 with p values of 0.048 and 0.046, respectively. In 

Study 2a, the test reported in Table 1 gives a modest p=0.028, but an ANOVA comparing a 

related interaction produced p=0.047. Likewise, in Study 3, the comparison reported in 

Table 1 gives p=0.006, but an ANOVA of a main effect of condition (across four 

conditions) gives p=0.045. Perhaps the sampling process was stopped as soon as a desired 

statistical significance was found for all of the tests of interest to the authors. Without such 

a bias it is difficult to imagine how the authors consistently selected just the right sample 

size so as to barely reject the null hypotheses they were interested in testing.  

Equally common may be biased theorizing. For example, it is possible to measure 

many different variables and then run a variety of analysis and look for post-hoc patterns 

that make a compelling story. Kerr (1998) described this approach as hypothesizing after 

the results are known (HARKing). There is no direct way of detecting this practice, but it is 

notable that Doerrfield et al. (2012) measured several variables that generally seem 
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unrelated to their main conclusion. For example, each experiment measured weight 

judgments before lifting the basket and after lifting the basket. Support for the theory was 

claimed on the basis of the consistent pre-lifting effects. The post-lifting effects were 

described, but the effects were inconsistent and were treated by the authors as unrelated to 

the thesis. Given that the outcome was unrelated to the theory, one has to wonder why the 

post-lifting variable was even measured. Curiously, the presence of null effects for the post-

lifting judgments actually makes them more believable than the overly consistent pre-lifting 

judgments. Whether the post-lifting data support the thesis is something for a subject matter 

expert to determine. A skeptic might suspect that whichever data set happened to produce a 

consistent pattern would have been used as evidence for the theory, and such HARKing 

often produces publication bias.  

I describe these possible routes to bias not as an accusation against Doerrfeld et al. 

(2012), who I suspect operated with the best of intentions in designing and reporting their 

studies, but as a demonstration of how seemingly minor decisions throughout a research 

project can lead to a biased experiment set. Ultimately, it does not much matter exactly how 

bias was introduced; the main observation is that the set of experimental results reported by 

Doerrfeld et al. (2012) as evidence for their thesis would be quite rare if they were 

generated without some form of bias. Since there is no way to know the extent of the bias, 

readers should be skeptical about the findings and conclusions of the original study.  

Anyone wanting to explore the relationship between weight judgments under solo 

and joint lifting conditions will need to run new experiments. If the effect size is close to 

the pooled estimate of 0.865, then sample sizes around 22 are required to achieve a power 

of 0.8. Some biases inflate the effect size estimate, and if the true effect size is half the 
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value of the pooled estimate, then sample sizes of around 85 (in each group) are required. 

For such samples, the probability of four out of four such experiments all rejecting the null 

hypothesis would be 0.41. To achieve a probability of 0.8 for four out of four experiments 

rejecting the null each experiment would need to have a power of 0.946, which would 

require 136 subjects in each group.  

If such sample sizes seem excessive for establishing scientific evidence for an 

effect, it is only because current scientific practice in psychology vastly underestimates the 

uncertainty that persists after an experiment. Figure 1 makes it clear that even statistically 

significant findings contain much uncertainty about the true magnitude of an effect. 

Consider Study 2a, which rejected the null hypothesis with p=0.028. The 95% confidence 

interval around the standardized effect size stretches from 0.072 to 2.208. These extremes 

are equivalent to saying that the effect may essentially be of no practical importance, or that 

the effect is so large that it could hardly fail to be noticed. In isolation, this experiment 

provides very little information about the effect. Indeed, convincing scientific evidence in 

psychology almost always requires a meta-analysis that pools information across 

experiments. Such meta-analyses can only draw proper conclusions for unbiased 

experiment sets, so it is critical to identify biased experiment sets that promote a solid set of 

experimental results. 
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Table 1: Statistical properties of the Doerrfeld et al. (2012) experiments. Effect sizes were 

computed from the reported test statistics.  

  
N1 

 
N2 

 
Effect size 

Power from 
pooled ES 

Study 1 21 22 0.612 0.791 

Study 2a 8 8 1.157 0.364 

Study 2b 10 10 0.918 0.449 

Study 3 10 30 1.056 0.637 

  

  

Figure 1: Effect sizes and 95% confidence intervals for the key findings in Doerrfeld et al. 

(2012). 

 


