Publication bias in “Expecting to lift a box together makes the load look lighter”

Gregory Francis
Department of Psychological Sciences
Purdue University
phone: 765-494-6934

efrancis@purdue.edu

17 September 2012

Running head: Publication bias in “expecting to lift a box”



Abstract

Doerrfeld, Sebanz and Shiffrar (2012) reported evidence that perception is shaped by what
can be accomplished with other people. Their conclusion was based on consistent findings
from four experiments. However, given the effect sizes and sample sizes of the
experiments, the probability that all four experiments would reject the null hypothesis is
only 0.082 if the effect magnitude is as reported and the experiments were run properly.
This low probability suggests that the experiment set contains publication bias and thereby
does not provide valid scientific information about the phenomena. Scientists interested in

perception and joint actions will need to run new unbiased experiments.



Doerrfeld, Sebanz and Shiffrar (2012) tested whether anticipated effort alters perceptual
experience by having individuals judge the weight of a filled basket when they intended to
lift the basket either alone or with another person. Four experiments consistently rejected
the null hypothesis that the weight judgments were the same across the two intention
conditions. The experimental results were interpreted as strong evidence for the validity of
the result and confirmation of a theoretical hypothesis that perception is shaped by what can
be accomplished with other people.

However, experiments should only reject the null hypothesis at a rate that reflects
the power of the experiments. When experiments have low or moderate experimental
power, random sampling means that some experiments should not reject the null hypothesis
even if the reported effect is true (Francis, 2012a,b,d, in press; loannidis & Trikalinos,
2007; Schimmack, in press). The absence of expected null findings indicates publication
bias, which makes it impossible to judge whether the reported experiments are valid. As
shown below, such is the case for the findings in Doerrfeld et al. (2012).

Table 1 shows the key statistical properties of the four experiments. The fourth
column reports a measure of effect size (Hedges g) for each experiment. The effect size for
Study 1 might seem to differ from the effect sizes of the other three studies, but as Figure 1
shows, the difference is not unusual when considering the range of a 95% confidence
interval around the effect size for each experiment. In fact, the standard deviation across the
observed effect sizes (0.237) is close to the theoretically predicted value (0.195) based on
pooling the effect sizes (Hedges & Olkin, 1985). Given the statistical properties of the
effect sizes and given that the experiments used very similar methods and measures, it is

appropriate to pool the effect sizes. A meta-analysis that gives more emphasis to



experiments with larger sample sizes, by weighting each experimental effect size by its
inverse variance, (Hedges & Olkin, 1985), computes 0.865, Clos=(0.483, 1.25), as the best
estimate of the true effect size.

The last column of Table 1 reports experimental power, which is the probability that
an experiment rejects the null hypothesis, for the pooled effect size. The sum of the power
values, 2.24, is the expected number of times experiments like those in Doerrfeld et al.
(2012) would reject the null hypothesis (Ioannidis & Trikalinos, 2007). Thus, it is
surprising that four experiments rejected the null hypothesis. The probability that four out
of four experiments like these would reject the null hypothesis is the product of the power
values, which is 0.082. If they were run properly and reported fully, the experimental
outcomes in Doerrfeld ez al. (2012) are quite unusual for the reported effect sizes and
sample sizes. The low probability of the experiment set is below the 0.1 criterion
commonly used to establish publication bias (Begg & Mazumdar, 1994; loannidis &
Trikalinos, 2007; Sterne, Gavaghan & Egger, 2000).

Such bias can occur in a variety of ways. One approach is the suppression of non-
supportive findings, which is often described as a file-drawer problem, (Rosenthal, 1984);
and this kind of bias can dramatically alter the magnitude of a reported effect (Lane &
Dunlap, 1978). It may seem unlikely that researchers would deliberately suppress proper
experiments that did not show the effect, but there is sometimes a tendency to dismiss
negative or null findings as “pilot studies.”

Perhaps even more common are mistakes in sampling and analysis that inflate the
rejection rate of the null hypothesis (Simmons, Nelson & Simonsohn, 2011; John,

Loewenstein & Prelec, 2012). For example, a common sampling approach starts by



gathering an intermediate set of data and running a statistical analysis to see if the effect of
interest is present. If the effect is found, the experiment stops and the finding is reported;
but if the effect is not found, additional subjects are recruited and their data is added to the
previous set for a new analysis. The cycle of gathering data and testing repeats until finding
the effect of interest or the experimenter gives up. Such “data peeking” dramatically
inflates the Type I error rate (Strube, 2006), so the test conclusions cannot be trusted.

There is no statistical marker that convincingly reveals the use of a data peeking
strategy, but it seems generally consistent with the pattern of results in Doerrfeld et al.
(2012). In every experiment a notable analytical investigation (not necessarily those in
Table 1) produced a p value that was just below the criterion 0.05 value. Study 1 and 2b
produced the effects described in Table 1 with p values of 0.048 and 0.046, respectively. In
Study 2a, the test reported in Table 1 gives a modest p=0.028, but an ANOVA comparing a
related interaction produced p=0.047. Likewise, in Study 3, the comparison reported in
Table 1 gives p=0.006, but an ANOVA of a main effect of condition (across four
conditions) gives p=0.045. Perhaps the sampling process was stopped as soon as a desired
statistical significance was found for all of the tests of interest to the authors. Without such
a bias it is difficult to imagine how the authors consistently selected just the right sample
size so as to barely reject the null hypotheses they were interested in testing.

Equally common may be biased theorizing. For example, it is possible to measure
many different variables and then run a variety of analysis and look for post-hoc patterns
that make a compelling story. Kerr (1998) described this approach as hypothesizing after
the results are known (HARKing). There is no direct way of detecting this practice, but it is

notable that Doerrfield et al. (2012) measured several variables that generally seem



unrelated to their main conclusion. For example, each experiment measured weight
judgments before lifting the basket and after lifting the basket. Support for the theory was
claimed on the basis of the consistent pre-lifting effects. The post-lifting effects were
described, but the effects were inconsistent and were treated by the authors as unrelated to
the thesis. Given that the outcome was unrelated to the theory, one has to wonder why the
post-lifting variable was even measured. Curiously, the presence of null effects for the post-
lifting judgments actually makes them more believable than the overly consistent pre-lifting
judgments. Whether the post-lifting data support the thesis is something for a subject matter
expert to determine. A skeptic might suspect that whichever data set happened to produce a
consistent pattern would have been used as evidence for the theory, and such HARKing
often produces publication bias.

I describe these possible routes to bias not as an accusation against Doerrfeld ef al.
(2012), who I suspect operated with the best of intentions in designing and reporting their
studies, but as a demonstration of how seemingly minor decisions throughout a research
project can lead to a biased experiment set. Ultimately, it does not much matter exactly how
bias was introduced; the main observation is that the set of experimental results reported by
Doerrfeld et al. (2012) as evidence for their thesis would be quite rare if they were
generated without some form of bias. Since there is no way to know the extent of the bias,
readers should be skeptical about the findings and conclusions of the original study.

Anyone wanting to explore the relationship between weight judgments under solo
and joint lifting conditions will need to run new experiments. If the effect size is close to
the pooled estimate of 0.865, then sample sizes around 22 are required to achieve a power

of 0.8. Some biases inflate the effect size estimate, and if the true effect size is half the



value of the pooled estimate, then sample sizes of around 85 (in each group) are required.
For such samples, the probability of four out of four such experiments all rejecting the null
hypothesis would be 0.41. To achieve a probability of 0.8 for four out of four experiments
rejecting the null each experiment would need to have a power of 0.946, which would
require 136 subjects in each group.

If such sample sizes seem excessive for establishing scientific evidence for an
effect, it is only because current scientific practice in psychology vastly underestimates the
uncertainty that persists after an experiment. Figure 1 makes it clear that even statistically
significant findings contain much uncertainty about the true magnitude of an effect.
Consider Study 2a, which rejected the null hypothesis with p=0.028. The 95% confidence
interval around the standardized effect size stretches from 0.072 to 2.208. These extremes
are equivalent to saying that the effect may essentially be of no practical importance, or that
the effect is so large that it could hardly fail to be noticed. In isolation, this experiment
provides very little information about the effect. Indeed, convincing scientific evidence in
psychology almost always requires a meta-analysis that pools information across
experiments. Such meta-analyses can only draw proper conclusions for unbiased
experiment sets, so it is critical to identify biased experiment sets that promote a solid set of

experimental results.
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Table 1: Statistical properties of the Doerrfeld et al. (2012) experiments. Effect sizes were
computed from the reported test statistics.

Power from
N1 N2 Effectsize pooled ES

Study 1 21 22 0.612 0.791
Study2a 8 8 1.157 0.364
Study 2b 10 10 0.918 0.449
Study3 10 30 1.056 0.637

Figure 1: Effect sizes and 95% confidence intervals for the key findings in Doerrfeld et al.

(2012).
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