Purdue Workshop, June 11-14, 2005

Understanding Human Optimization: The Case for a Tractable-design Cycle

Iris van Rooij Human-Technology Interaction Technische Universiteit Eindhoven (TU/e) Email: <u>i.v.rooij@tm.tue.nl</u> Website: <u>http://www.ipo.tue.nl/homepages/ivrooij/</u>

Overview

Formulating cognitive theories Levels of Explanation Optimization and Satisficing Testing cognitive theories Underdetermination of Theory Utilizing Theoretical Constraints

Tractable-design cycle Cautions and Clarifications

Conclusion

Levels of Description

Level	Marr's levels	Question
1	Computational	What?
2	Algorithm	How ₁ ?
3	Implementation	How ₂ ?

Underdetermination of Lower Levels

Algorithmic level

Computational level

Implementational level

Domain	Computational Level Theory (Informal)	References
Categorization	Input: A set of objects. Output: A partition that maximizes within- category similarity and between-category dissimilarity.	(Pothos & Chater, 2001, 2002; Rosch, 1973)
Coherence	Input: A set of interconnected beliefs. Output: A truth assignment of maximum coherence.	(Millgram, 2000; Thagard, 2000; van Rooij, 2003)
Perceptual organization	Input: A set of visual elements. Output: A grouping of maximum simplicity.	(van der Helm & Leeuwenberg, 1996; van der Helm, 2004)
Similarity	Input: Two objects, x and y. Output: The length of the shortest program computing x from y.	(Hahn, Chater, & Richardson, 2003; Chater and Vitanyi, 2003)
Subset Choice	Input: A set of alternatives. Output: A subset of maximum value.	(Fishburn & LaValle, 1993, 1996; van Rooij, Stege & Kadlec, 2005)
Visual matching	Input: A target, display and criteria x and y. Question: Do target and display match on at least x aspects and mismatch on at most y aspects?	(Kube, 1990, 1991; Tsotsos, 1990, 1991; van Rooij, 2003).

Formalization Example 1

Categorization (informal)

Input: A set of objects.

Output: A partition that maximizes within-category similarity and between-category dissimilarity.

Categorization (formal)

Input: A set of objects, *A*, with a similarity measure s(x,y) and a dissimilarity measure d(x,y) for each pair of objects $x, y \in A$.

Output: A partition of A into categories $A_1, A_2, ..., A_k$, such that $\sum_{x,y \in A_i, i=1,2,...k} s(x,y) + \sum_{x,y \notin A_i, i=1,2,...k} d(x,y)$ is maximum.

Formalization Example 2

Coherence (informal) Input: A set of interconnected beliefs. Output: A truth assignment of maximum coherence.

Coherence (formal)

Input: Set of propositions *P*, set of constraints $C = C^- \cup C^+$.

Output: A truth assignment to the propositions in *P* that satisfies a maximum number of constraints.

A constraint $(p, q) \in C^-$ is satisfied if p is 'false' and q is 'true'.

A constraint $(p, q) \in C^+$ is satisfied if both p and q are 'true' or both p and q are 'false'

Empirical Underdetermination of the Computational Level

Empirical Underdetermination of the Computational Level

Several reasons

- 1. Any finite set of input-output observations is consistent with infinitely many different functions.
- 2. Inputs and outputs are usually not directly observable.
- 3. Psychological data are noisy (due to context variables not under the control of the experimenter).
- 4. Commitment is usually to the informal theory, not the formalization.

Even More Underdetermination ...

Can We Use Lower-Level Constraints?

Can We Use Lower-Level Constraints?

Computability Constraint

Cognitive functions \subseteq Computable functions

Tractability Constraint

Observation 1: Cognitive functions are implemented by <u>physical</u> systems.

Observation 2: Physical systems are <u>limited</u> in space and speed.

Conclusion: Cognitive functions \subseteq Tractable functions.

[e.g. Frixione, 2001; Simon, 1990; Thagard & Verbeurgt, 1998]

Tractability Constraint

Cognitive functions ⊆ Tractable functions

Is Rosch's Categorization Tractable?

Categorization (informal)

Input: A set of objects.

Output: A partition that maximizes within-category similarity and between-category dissimilarity.

Categorization (formal)

Input: A set of objects, *A*, with a similarity measure s(x,y) and a dissimilarity measure d(x,y) for each pair of objects $x, y \in A$.

Output: A partition of A into categories $A_1, A_2, ..., A_k$, such that $\sum_{x,y \in A_i, i=1,2,...k} s(x,y) + \sum_{x,y \notin A_i, i=1,2,...k} d(x,y)$ is maximum.

Is Thagard's Coherence Tractable?

Coherence (informal) Input: A set of interconnected beliefs. Output: A truth assignment of maximum coherence.

Coherence (formal)

Input: Set of propositions *P*, set of constraints $C = C^- \cup C^+$.

Output: A truth assignment to the propositions in *P* that satisfies a maximum number of constraints.

A constraint $(p, q) \in C^-$ is satisfied if p is 'false' and q is 'true'.

A constraint $(p, q) \in C^+$ is satisfied if both p and q are 'true' or both p and q are 'false'.

Unbounded Exponential-time Computation is Intractable

Exhaustive search of combinatorial complex spaces is impractical for all but very small input sizes.

n	O(<i>n</i> ²)	O(2 ⁿ)
5	0.15 msec	0.19 msec
20	0.04 sec	1.75 min
50	0.25 sec	8.4 x 10² yrs
100	1.00 sec	9.4 x 10 ¹⁷ yrs
1000	1.67 min	7.9 x 10 ²⁸⁸ yrs

Rosch's Categorization and Thagard's Coherence are NP-hard

Cognitive functions ⊆ Tractable functions

Empirical Cycle + Tractable-design Cycle

Intractability is not always bad news! (Or, at least: don't shoot the messenger)

Tractability is not always good news! (Or, at least: it is not a goal in itself)

Tractability is not trivially achieved!

For example: Optimization is tractable \Leftrightarrow Satisficing is tractable

Coherence (optimization variant)

Input: Set of propositions *P*, set of constraints $C = C^- \cup C^+$.

Output: A truth assignment to the propositions in *P* that satisfies a **maximum** number of constraints.

Coherence (satisficing variant)

Input: Set of propositions *P*, set of constraints $C = C^- \cup C^+$, integer *k*.

Output: A truth assignment to the propositions in *P* that satisfies **at least** *k* constraints.

Heuristics cannot serve as algorithmic level theories!

Intractability requires theory change!

Domain restriction is a form of theory change!

For example:

Coherence (unrestricted)

Input: Set of propositions *P*, set of constraints $C = C^- \cup C^+$.

Output: A truth assignment to the propositions in *P* that satisfies a **maximum** number of constraints.

Coherence (restricted)

Input: Set of propositions *P*, set of constraints $C = C^- \cup C^+$, such that property *X* holds.

Output: A truth assignment to the propositions in *P* that satisfies a **maximum** number of constraints.

Get the most out of tractability analysis! <u>For example:</u> Analyse many (embedded) formalizations

Summary & Conclusion

Benefits of Tractable-Design Cycle Encourages formalization Helps constrain computational-level theory Understanding of cognitive (im)possibilities

Cautions and Clarifications

Open methodological question How to asses (in)tractability of theories?