A Generative Model of Human
Performance on an Optimal Stopping
Problem

Michael Lee
Department of Psychology

University of Adelaide

with thanks to Peter Griunwald, Dan Navarro, Josh Tenenbaum, Chloé
Mount, Jay Myung, Doug Vickers, Matt Welsh, Tess Gregory, Robyn
Whibley, James Campbell, Chrisi Lambos, Michael Webb, Gary Ewing &
Michael Paradowski



79.69

[1/5]



34.40

[2/5]



82.95

[3/5]



95.77

[4/5]



24.26

[5/5]



Why Study This Problem?



More Controlled than Knowledge-Rich




More Realistic than Knowledge-Lean
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Complements Other Optimisation Problems
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Optimal Decision Rule
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Two Optimal Decisions

violates rule, but maximum value
(bad but lucky)
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Empirical Data
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Experimental Interface

77.66

YES 4/5 NO

| | | | | | | Definitely Correct




16

50 Subjects on 40 Five-Point Problems
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98 Subjects on 40 More Five-Point Problems
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Mean Confidence
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No Evidence of Learning

Maximum Value Decision Rule
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Other Values Don’t Seem to Matter
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Value in Position Matters
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Being Currently Maximal Really Matters
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A Hierarchical Bayesian
Generative Model
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Why HBG Models?

. Hierarchical

- represent knowledge at different levels of
abstraction

- formalize the structure of relationships
between levels
- Generative

- provide an account of how cognitive models
are instantiated and bounded

- quarantine core issues of modeling from
secondary questions of inference

- Bayesian

- provides a (the?) complete and coherent
approach to statistical inference with models
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Generative Framework
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Making Inferences About Generative Process
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Results for One Subject
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Building Predictive Models
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Posterior Predictive Models
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Overall
Evaluation
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Individual Differences at Generative Level




33

Individual Differences in Predictive Models
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Preliminary Results of
Current Work
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Feedback and Reward
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Evidence of Motivation, but not of Learning?

Decision Rule
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Interesting Feedback by Reward Interaction?
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Leadership to Extremes?
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Thanks!
Questions?
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