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Traveling Salesman Problem:

Find the O
shortest tour of
N cities.



Traveling Salesman Problem:

TSP Is a difficult

optimization
problem.
&




Experiment

5 subjects

Problem size: 6, 10, 20, 50

25 random problems per size

Problems were shown on a computer screen
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Model

* Multiresolution pyramid representation
e Top-down process of tour approximations



1D Pyramid architecture

The number of nodes on layer I+1 is b times smaller
than that on layer 1. Receptive field on layer i+11isb
times larger than that on layer I.

What is local close to the top, is global close to the
bottom.






Model

* Multiresolution pyramid representation
e Top-down process of tour approximations

e Pyramid with the “fovea” and with “eye
movements”



Neuroanatomy of the visual system
(Hubel & Wiesel, 1974)
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At each retinal location, there is a family of receptive fields with
different sizes and resolutions.

The size of the smallest field is a function of eccentricity.



Pyramid with Fovea

Resolution of the finest representation decreases
with the distance from the fixation point — this

corresponds to the non-uniform density of the
receptors on the retina.

Prevents from handling too much information at
a time.



Model

Multiresolution pyramid representation
Top-down process of tour approximations

Pyramid with the “fovea” and with “eye
movements”

Local search by means of “cheapest insertion”



Cheapest Insertion
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Model

Multiresolution pyramid representation
Top-down process of tour approximations

Pyramid with the “fovea” and with “eye
movements”

Local search by means of “cheapest insertion”
Adaptive receptive fields



Blurring with Gaussian Filter
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Min-Max Method for Determining
Cluster Boundaries




Bisection Pyramid — Top Layer (8)
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Testing the Pyramid Model

* The model was run on the same problems that
were used with the subjects

* The size k of the neighborhood for cheapest
Insertion was a free parameter

o Computational complexity of the model: between
O(N) and O(N?).

Demo
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ZP solving large problems...




Minimum Spanning Tree vs. TSP

MST TSP
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What is MST actually good for?

o Clustering?
« \What type of clustering?



MST as line detector

Perfect circle L_ess-than perfect circle

N




MST for a realistic example
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TSP solutions

Optimal Line Pyramid



Summary

Computational complexity of the mental mechanisms is
very low but TSP tours found by the subjects are close to
optimal.

Coarse-to-fine sequence of approximations produced by a
pyramid algorithm provides a plausible model of the
mental mechanisms involved in solving TSP.

The TSP model simulates attention (visual acuity), as well
as eye movements — this minimizes the use of memory
without slowing down the solution process.

Simulated receptive fields are adaptive.

The line detection mechanism is likely to be based on
MST.



Next Step

o Test the model using TSP with obstacles.



Euclidean TSP with Obstacles
(NE-TSP)

n




Maze — Like Obstacles

Visual spatial
relations in the
problem
representation
(proximities,
directions) have to be
modified by bottom-
up verification of
availability of moves.



Metric Always EXists, but
May be Difficult to Reconstruct

Idaze at Hatfield House, Herts
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