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OutlineOutline

z Motivation
z Computational problems

– Optimization Problems versus Decision Problems
z Classical Tractability vs. Classical

Intractability
– Classical Tractability and Polynomial time 
– Nondeterministic polynomial time
– Classical Intractability: NP-hardness and NP-

completeness
z Parameterized decision problems

– Fixed-Parameter Tractability
– Fixed-Parameter Intractability
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Which functions can describe Which functions can describe 
cognitive systems?cognitive systems?

All functions

Turing- computable 
functions

Cognitive 
functionsintractable

tractable



Which cognitive systems are Which cognitive systems are 
tractable?tractable?
z Before Testing of Cognitive Theory

– Formalization of the cognitive theory →
computational problem

– Tractable or intractable? → Analyze 
complexity of computational problem

– If intractable, revise cognitive theory



Computational ProblemsComputational Problems

z Optimization Problems
z Decision Problems
z Optimization Problems versus 

Decision Problems



Optimization ProblemsOptimization Problems

zMaximization problems
zMinimization problems

Coherence (informal)

Input: A set of interconnected beliefs.
Output: A truth assignment of maximum

coherence.



Coherence (informal)
Input: A set of interconnected beliefs.
Output: A truth assignment of maximum coherence.

Coherence (formal)

Input: Set of propositions P, set of constraints C = C– ∪ C+.

Output: A truth assignment to the propositions in P that satisfies a 
maximum number of constraints. Here a constraint (p, q) ∈ C– is 
satisfied if p is ‘false’ and q is ‘true’, and a constraint (p, q) ∈ C+ is 
satisfied if both p and q are ‘true’ or both p and q are ‘false’

Optimization ProblemsOptimization Problems



Optimization ProblemsOptimization Problems

Coherence (even more formal)
Input: Network N = (P,C), where C is partitioned 
into C = C– ∪ C+.
Output: A subset A⊆ P such that |{(p,q) ∈C : 
(p,q) is satisfied}| is maximized. 

Here, (p,q) ∈ C– is satisfied if either (p ∈ A and 
q ∉ A) or (p ∉ A and q ∈ A), and (p, q) ∈ C+ is 
satisfied if either p, q ∈ A or p, q ∉ A.



Computational ProblemsComputational Problems

z Optimization Problems
z Decision Problems
z Optimization Problems versus 

Decision Problems



Decision ProblemsDecision Problems

z Answer: yes / no



Decision ProblemDecision Problem

Coherence (Decision Version)
Input: N = (P,C), C is partitioned into 
C = C– ∪ C+, a positive integer k
Question: Does there exist A⊆ P such 
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k? 



Decision ProblemsDecision Problems

z Answer: yes / no
z Often answer is constructive: If yes, 

we also know  a solution that is a 
witness for answer.



Computational ProblemsComputational Problems

z Optimization Problems
z Decision Problems
z Optimization Problems versus 

Decision Problems



Decision Problems versus Decision Problems versus 
Optimization ProblemsOptimization Problems
z Goal : Determine whether the 

formalized (optimization) problem is 
tractable or intractable.

z Complexity Theory : set up for 
decision problems

z ???What about our optimization 
problem???



Decision Problems versus Decision Problems versus 
Optimization ProblemsOptimization Problems
z In classical and parameterized 

framework we can show

If decision problem is tractable, then 
optimization problem is tractable, 
and vice versa!



Decision problem is tractable Decision problem is tractable ⇒⇒
optimization problem is tractableoptimization problem is tractable

z We first introduce our framework and then 
reconsider this issue.

z Classical Complexity
– Tractability ≅ Polynomial Time ≅ P
– A decision problem L is decidable in 

polynomial time iff for each instance <x,k> it 
can be decided in |x|c (c is constant) time 
whether <x,k> ∈ L or <x,k> ∉ L.

L ∈ PP



The Polynomial Time Class  The Polynomial Time Class  PP
z Examples: |x|, |x|2, |x|3, |x|81

n O(n2) O(2n) O(2κn), κ = 10
5
20
50

100 1.00 sec 9.4 x 1017 yrs 10.2 sec
1000

0.19 msec 0.51 sec0.15 msec
0.04 sec
0.25 sec

1.75 min 2.05 sec

1.67 min

8.4 x 103 yrs 5.12 sec

7.9 x 10288 yrs 1.71 min



The Polynomial Time Class  The Polynomial Time Class  PP
z How can we prove that a decision 

problem L ∈ P ?



Decision Problems versus Decision Problems versus 
Optimization ProblemsOptimization Problems
z In classical and parameterized 

framework we can show

If optimization problem is tractable, 
then decision problem is tractable.

LLoptopt ∈∈ PP ⇒⇒ LL ∈∈ PP



LLoptopt ∈∈ PP ⇒⇒ LL ∈∈PP



Decision Problems versus Decision Problems versus 
Optimization ProblemsOptimization Problems
z In classical and parameterized 

framework we can show

If decision problem is tractable, then 
optimization problem is tractable!



Coherence for Coherence for C C = = C+C+

P’ = ?

k = 6



Coherence for Coherence for C C = = C+ C+ 
(opt. Version)(opt. Version)

P’ = ?



LL ∈∈ PP ⇒⇒ LLoptopt ∈∈ PP
z x ∈ Lopt?
z Range of k
z <x,k>
z (Range of k)|x|c

∈∈ PP



Decision Problems versus Decision Problems versus 
Optimization ProblemsOptimization Problems

z L ∈ P ⇔ Lopt ∈ P



Coherence Coherence (Decision Version)(Decision Version)

Input: N = (P,C), C is partitioned into 
C = C– ∪ C+, a positive integer k
Question: Does there exist A⊆ P such 
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k? 

z Is Coherence ∈P ?
z Answer: we don’t really know.
z What do we know?



The Polynomial Time Class  The Polynomial Time Class  PP

z How can we prove that a decision 
problem L ∈ P ?

z How can we prove that a decision 
problem L ∉ P ?



The Nondeterministic The Nondeterministic 
Polynomial Time Class  Polynomial Time Class  NNPP
z A decision problem L is decidable in 

nondeterministic polynomial time iff
for each instance <x,k> and any 
solution S, it can be verified in 
polynomial time (|x|c) if S proves that
<x,k> is a yes-instance for L.



The Nondeterministic The Nondeterministic 
Polynomial Time Class  Polynomial Time Class  NNPP
z For a decision problem L ∈NP and an 

instance <x,k> we can determine 
whether <x,k> is a yes-instance for L or 
<x,k> is a no-instance for L in
exponential time.

z That is, we just have to try out each 
candidate solution!



Coherence Coherence ∈∈ NNPP
zWhat is a possible solution/witness 

for Coherence?

z Show
– The witness is “short”

– We can verify in a “short” time if the 
witness is a correct solution. 



PP versus versus NPNP
z A task that we can complete fast, we 

can also complete slow(er).

z Thus: P ⊆ NP

z But: the converse does not 
necessarily hold!



PP = = NP ?NP ?
z Million dollar question!
z Assumption: P ≠ NP
z We assume there is a decision problem L

such that L ∈P and L ∉NP. 
z We say a problem is NP–hard if it is at 

least as hard as any problem in NP. 

z We say a problem is NP–complete if it is 
(1) NP -hard and (2) also in NP itself. 



(Classically) intractable (Classically) intractable 

z An NP–hard decision problem is 
viewed as (classically) intractable.

z To prove that P = NP  it is enough to 
show that there exists an NP–hard 
problem that is in P !

z So far, nobody was able to do so …



Proving Proving NPNP--hardnesshardness

Let L be the problem we want to show 
NP–hardness for.

z Show that there is an NP–hard 
problem L’ that can be polynomial-
time reduced to L. 

Polynomial-time 
algorithm<x’, k’> ∈ L’? p(<x’, k’>) ∈ L?

yes yesif and only if



Proving Proving NPNP––hardnesshardness

z If L is NP–hard, then a polynomial-time 
algorithm for L would also imply a 
polynomial-time algorithm for L’.

z How do we find L’? 
– There is a huge catalogue of problems that 

are shown to be NP–hard, just pick one that 
works without too much trouble. 

– Not very difficult, but experience helps.



Coherence is Coherence is NPNP––hardhard

z We reduce from a problem called Max-Cut

z Max-Cut is known to be NP–complete 
[GJ’79]. 

z More details in demo session tomorrow.



Corollary Corollary 

z Coherence is NP-complete
– even for C = C-



Is Coherence (really) intractable?Is Coherence (really) intractable?

Reconsider / specify the task. 
z Can we reduce the input space?
z Can we parameterize?



Reducing the input space: Reducing the input space: C C = = CC++

zWe can decide Coherence in 
polynomial time if C = C+.



Reducing the input space: Is a Reducing the input space: Is a 
network consistent?network consistent?
z A network is consistent if every edge 

(constrained) can be satisfied.

zWe can decide in polynomial time 
whether or not a network N = (P, C) is 
consistent.



Reducing the input space: Reducing the input space: 
Coherence for treesCoherence for trees



Reducing the input space: Reducing the input space: 
Coherence for treesCoherence for trees



Reducing the input space: Reducing the input space: 
Coherence for treesCoherence for trees



Reducing the input space: Reducing the input space: 
Coherence for treesCoherence for trees



Reducing the input space: Reducing the input space: 
Coherence for treesCoherence for trees



Reducing the input space: Reducing the input space: 
Coherence for treesCoherence for trees



Reducing the input space: Reducing the input space: 
Coherence for treesCoherence for trees



Reducing the input space: Reducing the input space: 
Coherence for treesCoherence for trees

Every tree is a 
consistent 
network!



Is Coherence (really) intractable?Is Coherence (really) intractable?

Reconsider / specify the task. 
z Can we reduce the input space?
z Can we parameterize?



Parameterized ComplexityParameterized Complexity

z Parameterized decision problem
z Parameterized Complexity Classes

–FPT
–W [1]

–W [2]
– …



Parameterized decision problemParameterized decision problem

z Like decision problem, but a 
parameter (explicit or implicit) is 
specified.



kk--Coherence Coherence (Parameterized (Parameterized 
Decision Version)Decision Version)
Input: An (inconsistent) network N = (P,C), 
C is partitioned into C = C– ∪ C+, a 
positive integer k
Parameter: k
Question: Does there exist A⊆ P such 
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k? 



FixedFixed--Parameter TractabilityParameter Tractability

A parameterized decision problem L is 
fixed-parameter tractable (fpt) if there 
exists a constant α and an algorithm Φ
such that Φ decides if is a yes-
instance for L in time where f is 
an arbitrary function of the parameter k.

FixedFixed--Parameter TractabilityParameter Tractability

kx,
αxf(k)⋅



Examples for Examples for FPTFPT running timesrunning times

instance size |x| = n, parameter k

2k n
28172k + n3

n91

nk
kkk +



RemarksRemarks

A problem that is NP–hard or NP –
complete for can be fixed-parameter 
tractable for a chosen parameter!

A problem that is in P is fixed-
parameter tractable for any chosen 
parameter.



kk--CoherenceCoherence

Input: An (inconsistent) network N = (P,C), 
C is partitioned into C = C– ∪ C+, a 
positive integer k
Parameter: k
Question: Does there exist A⊆ P such 
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k? 



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
z A network N is connected if for every 

pair of nodes there exists a path in N.



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k, 
then <N, k> is a yes-instance.

Proof. 



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k, 
then <N, k> is a yes-instance.

Proof. Pick a spanning 
subtree of N.



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k, 
then <N, k> is a yes-instance.

Proof. Pick a spanning 
subtree of N.⇒
At least |P| edges 
are satisfied!



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
z <N, k> instance for k-Coherence 
z N connected 
z If |P| > k then <N, k> is a yes-instance.
z Else |P| ≤ k.
z How much time does it take to decide 

the answer for <N, k> with |P| ≤ k?
z |E| = ?



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
z <N, k> instance for k-Coherence 
z N connected 
z If |P| > k then <N, k> is a yes-instance.
z Else |P| ≤ k.
z How much time does it take to decide 

the answer for <N, k> with |P| ≤ k?
z |E| ≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
z N is bounded in size in a function of k

• Problem Kernel

z Even if we have to try out every 
possible solution, the number of those 
is still a function of k

zWe can answer in fixed-parameter-
tractable time for parameter k



ProvingProving FPTFPT --MembershipMembership

z Give an algorithm
– Problem Kernel / Kernelization
– Bounded Search Tree

z Prove existence of a problem kernel
– Boundary Lemma

z Graph Minor Theorem
zMore details in demo session tomorrow.



How do we show that a (parameterized How do we show that a (parameterized 
decision) problem is parameterized decision) problem is parameterized 
intractable?intractable?
z Prove that the problem is hard for 

class W [1] or class W [2] or ...

z Prove that: if the problem is in FPT, 
then P = NP.



W W [1][1]

zFPT  ⊆ W [1]

z Conjecture: FPT  ≠ W [1]

z Hard for W [1]
– Problems that are likely not fixed-

parameter tractable
– Running times are something like nk



Prove that a (parameterized) Prove that a (parameterized) 
problem is hard for class problem is hard for class W W [1][1]
z Via parameterized reduction from a 

problem that is known to be hard for W [1] 
and that further preserves the parameter.

z Similar idea as in NP–hardness proofs. 
☺ Time permitted is in FPT (any function in 

parameter is allowed, rest polynomial)
/ Parameter has to be preserved!

☺ Many of the “classic” NP–hardness  
reductions in the literature are already 
parameterized.



SummarySummary

z We investigated techniques from computer 
science to prove (in)tractability for decision 
problems and optimization problems.

z We also observed: If a special case of a 
decision problem is (NP-)hard, then the 
problem itself is (NP-)hard itself.

z Further: If we can prove that a problem is 
tractable, then its special cases are tractable 
as well.





Demo SessionDemo Session

Ulrike Stege (University of Victoria)
Iris van Rooij (TU Eindhoven)



TopicsTopics

zNP–completeness proofs
– Membership 
– Polynomial-time reduction

zFPT–algorithms  
– Technique of building a problem kernel
– Technique of bounded a search tree
– combination



TopicsTopics

zFPT –membership 
– Existence of a problem kernel
– Graph Minor Theorem

z Parameterized intractability
– Parameterized reduction
– Not in FPT unless P = NP
– Membership in W [1]



Coherence Coherence (Decision Version)(Decision Version)

Input: An (inconsistent) network N = (P,C), 
C is partitioned into C = C– ∪ C+, a 
positive integer k
Question: Does there exist A ⊆ P such 
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k? 



Coherence is Coherence is NPNP––hardhard

We reduce from
Max-Cut (decision version)
Input : A graph G = (V, E). A positive integer m.
Question : Does there exist a partition of V into 
sets A and R such that

z Max-Cut is known to be NP–complete 
[GJ’79]. 

?},:),{( mRvAuEvu ≥∈∈∈



Max Cut (Example)Max Cut (Example)

A Rm = 4



Proving Proving NPNP--hardnesshardness

Let L be the problem we want to show 
NP–hardness for.

z Show that there is an NP–hard 
problem L’ that can be polynomial-
time reduced to L. 

Polynomial-time 
algorithm<x’, k’> ∈ L’? p(<x’, k’>) ∈ L?

yes yesif and only if



Coherence is Coherence is NPNP --hardhard

z Let (G,m) be an instance for Max Cut.
z We define an instance <N,k> for 

Coherence  as follows.
– P = V
– C = E
– C- = E
– k = m

z We still have to prove

<G,m> is a yes-instance for Max-Cut if and 
only if <N,k> is a yes-instance for Coherence

N = G



<<GG,,mm> > is a yesis a yes--instance for Maxinstance for Max--Cut if and Cut if and 
only ifonly if <<NN,,kk>> is a yesis a yes--instance for Coherence.instance for Coherence.

“⇒”
z Since <G,m> is a yes-instance for Max-Cut, 

we can assume V be partitioned into A and 
R. Further let                                                   .  

z We show A is a solution for N. Consider an 
edge e ∈ . Edge e is 
satisfied! 

z There are at least m = k many of those 
edges! 

mRvAuEvu ≥∈∈∈ },:),{(

},:),{( RvAuEvu ∈∈∈



((GG,,mm) ) is a yesis a yes--instance for Maxinstance for Max--Cut if and Cut if and 
only ifonly if ((NN,,kk)) is a yesis a yes--instance for Coherence.instance for Coherence.

“⇐”
z Let P’ be a solution for N.
zWe define a partition A = P’, R=V-P’

for G. Let e be satisfied in N. Then 
e ∈ . Then

mpRvAuEvu =≥∈∈∈ },:),{(
},:),{( RvAuEvu ∈∈∈



Corollary Corollary 

z Coherence is NP–complete
– even for C = C-



To determine whether a network To determine whether a network 
is consistent is in is consistent is in PP..



Coherence for treesCoherence for trees

Every tree is a 
consistent 
network!



To determine whether a network To determine whether a network 
is consistent is in is consistent is in PP..



Technique of Problem KernelTechnique of Problem Kernel



kk--Coherence Coherence (Parameterized (Parameterized 
Decision Version)Decision Version)
Input: An (inconsistent) network N = (P,C), 
C is partitioned into C = C– ∪ C+, a 
positive integer k
Parameter: k
Question: Does there exist P’⊆ P such 
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k? 



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k, 
then <N, k> is a yes-instance.

Proof. 



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k, 
then <N, k> is a yes-instance.

Proof. Pick a spanning 
subtree of N.



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k, 
then <N, k> is a yes-instance.

Proof. Pick a spanning 
subtree of N.⇒
At least |P| edges 
are satisfied!



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
z <N, k> instance for k-Coherence 
z N connected 
z If |P| > k then <N, k> is a yes-instance.
z Else |P| ≤ k.
z How much time does it take to decide 

the answer for <N, k> with |P| ≤ k?
z |E| = ?



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
z <N, k> instance for k-Coherence 
z N connected 
z If |P| > k then <N, k> is a yes-instance.
z Else |P| ≤ k.
z How much time does it take to decide 

the answer for <N, k> with |P| ≤ k?
z |E| ≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
z N is bounded in size in a function of k

– N is a problem Kernel
z Even if we have to try out every 

possible solution, the number of those 
is still a function of k

zWe can answer in fixed-parameter-
tractable time for parameter k



kk--Coherence for connected Coherence for connected 
networks is in networks is in FPTFPT
z N is bounded in size in a function of k

– N is a problem Kernel
z However: Often this is just the 1st step 

of an fpt-algorithm.



Technique of bounded search Technique of bounded search 
treestrees
zWe show using this technique that 

the problem |C–|-Coherence is in FPT.



|C|C––||--Coherence Coherence (Parameterized (Parameterized 
Decision Version)Decision Version)
Input: An (inconsistent) network N = (P,C), 
C is partitioned into C = C– ∪ C+, a 
positive integer k
Parameter: |C–|
Question: Does there exist P’⊆ P such 
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k? 



Technique of bounded search Technique of bounded search 
trees trees –– smart exhaustive searchsmart exhaustive search



|C|C––||--CoherenceCoherence

Input: An (inconsistent) network N = (P,C), 
C is partitioned into C = C– ∪ C+, a 
positive integer k
Parameter: |C–|
Question: Does there exist P’⊆ P such 
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k? 



|C|C––||--Coherence is in Coherence is in FPTFPT

z Generalize |C–|-Coherence to |C–|-
Annotated Coherence 

z Apply technique of bounded search 
tree to |C–|-Annotated Coherence



Generalization of Generalization of |C|C––||--Coherence Coherence 

|C–|-Annotated Coherence 
Input: A network N = (P, C). Here, P is 

partitioned into U*, P*, and R*, and C is
partitioned into C+ and C-. A positive integer
k.

Parameter: |C–|
Question: Does there exist a partition of P into

P’ and R such that P*⊆ P’, R’ ⊆ R, and at 
least k edges are satisfied by A and R?



|C|C––||--Coherence is a special case Coherence is a special case 
of of |C|C––||--Annotated Coherence Annotated Coherence 



An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence

<N, k>

<N1, k1> <N2, k2>

<N11, k11>
<N22, 
k22>

<N12, 
k12>

<N21, 
k21>



An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence

P = P- ∪ P+<N, k>



An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence

<N, k>

p ∈ P-

<N1, k1>

Select p<N2, k2>

Do not select p



<N, k>: instance for |C-|-Annotated Coherence
z N = (P, C) 
z P = U’ ∪ P’ ∪ R’, and 
z P = P- ∪ P+. 
z Let p ∈ U’∩ P-.
Create in the search tree two children of <N, k>.
z <N1, k1>: N1 = (P1, C1) with U1’ = U’\{p}, 

P1’ = P’ ∪ {p}, R1’ = R’, k1 = k
z <N2, k2>: N2 = (P2, C2) with U2’ = U’\{p}, 

P2’ = P’, R2’ = R’ ∪ {p}, k2 = k.

((PP--))--ElementElement--decisiondecision BranchingBranching--
RuleRule



How big is the search tree after applying How big is the search tree after applying 
the reduction rule as often as possible?the reduction rule as often as possible?

<N, k>

<N1, k1> <N2, k2>

<N11, k11>
<N22, 
k22>

<N12, 
k12>

<N21, 
k21>



How big is the search tree after applying How big is the search tree after applying 
the reduction rule as often as possible?the reduction rule as often as possible?

<N, k>

<N1, k1> <N2, k2>

<N11, k11>
<N22, 
k22>

<N12, 
k12>

<N21, 
k21>

|| −P



An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence
z 2|P-| ≤ ?
z |P-| ≤ 2|E-|
z 2|P-| ≤ 22|E-|

z Running time so far: 22|E-||N| 
z If not solved: How does an instance 

look like after this branching process?



An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence
z In N are only vertices from P+ left! That 

means we are left with only positive 
undecided constraints.

z we can clean up the decided 
constraints, i.e. we remove them from 
the network

z Afterwards we can also remove the 
isolated vertices



|C|C––||--Annotated Coherence Annotated Coherence 
with with P P = = PP++
Input: A network N = (P, C). Here, P is 

partitioned into U*, P*, and R*, and
C=C+. A positive integer k.

Parameter: |C–|
Question: Does there exist a partition of P

into P’ and R such that P*⊆ P’, R’ ⊆ R, 
and at least k edges are satisfied by A
and R?















Reduction RuleReduction Rule

z Let p be a vertex where all neighbors 
are already selected. If |N(v) ∩ A*| > 
|N(v) ∩ R*| then accept p, else reject p.



If all nodes that are selected
are in A*, then P = A.

If all nodes that are selected
are in R*, then P = R.

Otherwise network is 
inconsistent. 







CorollaryCorollary: : |C|C++||--Coherence Coherence ∉∉ FPTFPT
(unless (unless PP = = NPNP))



Parameterized ReductionParameterized Reduction
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