
Implementing the TractableImplementing the Tractable--
Design Cycle: Definitions and Design Cycle: Definitions and
TechniquesTechniques

Ulrike Stege
Department of Computer Science

University of Victoria

Implementing the TractableImplementing the Tractable--Design Design
Cycle: Complexity AnalysisCycle: Complexity Analysis——
Definitions and TechniquesDefinitions and Techniques

Formal

Informal
Tractability

testing

Computational
level theory

Joint work with Iris van Rooij, cf. Iris’ PhD thesis.

OutlineOutline

z Motivation
z Computational problems

– Optimization Problems versus Decision Problems
z Classical Tractability vs. Classical

Intractability
– Classical Tractability and Polynomial time
– Nondeterministic polynomial time
– Classical Intractability: NP-hardness and NP-

completeness
z Parameterized decision problems

– Fixed-Parameter Tractability
– Fixed-Parameter Intractability

Which functions can describe Which functions can describe
cognitive systems?cognitive systems?

All functions

Turing-
computable

functions
Cognitive
functions

Which functions can describe Which functions can describe
cognitive systems?cognitive systems?

All functions

Turing- computable
functions

Cognitive
functionsintractable

tractable

Which cognitive systems are Which cognitive systems are
tractable?tractable?
z Before Testing of Cognitive Theory

– Formalization of the cognitive theory →
computational problem

– Tractable or intractable? → Analyze
complexity of computational problem

– If intractable, revise cognitive theory

Computational ProblemsComputational Problems

z Optimization Problems
z Decision Problems
z Optimization Problems versus

Decision Problems

Optimization ProblemsOptimization Problems

zMaximization problems
zMinimization problems

Coherence (informal)

Input: A set of interconnected beliefs.
Output: A truth assignment of maximum

coherence.

Coherence (informal)
Input: A set of interconnected beliefs.
Output: A truth assignment of maximum coherence.

Coherence (formal)

Input: Set of propositions P, set of constraints C = C– ∪ C+.

Output: A truth assignment to the propositions in P that satisfies a
maximum number of constraints. Here a constraint (p, q) ∈ C– is
satisfied if p is ‘false’ and q is ‘true’, and a constraint (p, q) ∈ C+ is
satisfied if both p and q are ‘true’ or both p and q are ‘false’

Optimization ProblemsOptimization Problems

Optimization ProblemsOptimization Problems

Coherence (even more formal)
Input: Network N = (P,C), where C is partitioned
into C = C– ∪ C+.
Output: A subset A⊆ P such that |{(p,q) ∈C :
(p,q) is satisfied}| is maximized.

Here, (p,q) ∈ C– is satisfied if either (p ∈ A and
q ∉ A) or (p ∉ A and q ∈ A), and (p, q) ∈ C+ is
satisfied if either p, q ∈ A or p, q ∉ A.

Computational ProblemsComputational Problems

z Optimization Problems
z Decision Problems
z Optimization Problems versus

Decision Problems

Decision ProblemsDecision Problems

z Answer: yes / no

Decision ProblemDecision Problem

Coherence (Decision Version)
Input: N = (P,C), C is partitioned into
C = C– ∪ C+, a positive integer k
Question: Does there exist A⊆ P such
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k?

Decision ProblemsDecision Problems

z Answer: yes / no
z Often answer is constructive: If yes,

we also know a solution that is a
witness for answer.

Computational ProblemsComputational Problems

z Optimization Problems
z Decision Problems
z Optimization Problems versus

Decision Problems

Decision Problems versus Decision Problems versus
Optimization ProblemsOptimization Problems
z Goal : Determine whether the

formalized (optimization) problem is
tractable or intractable.

z Complexity Theory : set up for
decision problems

z ???What about our optimization
problem???

Decision Problems versus Decision Problems versus
Optimization ProblemsOptimization Problems
z In classical and parameterized

framework we can show

If decision problem is tractable, then
optimization problem is tractable,
and vice versa!

Decision problem is tractable Decision problem is tractable ⇒⇒
optimization problem is tractableoptimization problem is tractable

z We first introduce our framework and then
reconsider this issue.

z Classical Complexity
– Tractability ≅ Polynomial Time ≅ P
– A decision problem L is decidable in

polynomial time iff for each instance <x,k> it
can be decided in |x|c (c is constant) time
whether <x,k> ∈ L or <x,k> ∉ L.

L ∈ PP

The Polynomial Time Class The Polynomial Time Class PP
z Examples: |x|, |x|2, |x|3, |x|81

n O(n2) O(2n) O(2κn), κ = 10
5
20
50

100 1.00 sec 9.4 x 1017 yrs 10.2 sec
1000

0.19 msec 0.51 sec0.15 msec
0.04 sec
0.25 sec

1.75 min 2.05 sec

1.67 min

8.4 x 103 yrs 5.12 sec

7.9 x 10288 yrs 1.71 min

The Polynomial Time Class The Polynomial Time Class PP
z How can we prove that a decision

problem L ∈ P ?

Decision Problems versus Decision Problems versus
Optimization ProblemsOptimization Problems
z In classical and parameterized

framework we can show

If optimization problem is tractable,
then decision problem is tractable.

LLoptopt ∈∈ PP ⇒⇒ LL ∈∈ PP

LLoptopt ∈∈ PP ⇒⇒ LL ∈∈PP

Decision Problems versus Decision Problems versus
Optimization ProblemsOptimization Problems
z In classical and parameterized

framework we can show

If decision problem is tractable, then
optimization problem is tractable!

Coherence for Coherence for C C = = C+C+

P’ = ?

k = 6

Coherence for Coherence for C C = = C+ C+
(opt. Version)(opt. Version)

P’ = ?

LL ∈∈ PP ⇒⇒ LLoptopt ∈∈ PP
z x ∈ Lopt?
z Range of k
z <x,k>
z (Range of k)|x|c

∈∈ PP

Decision Problems versus Decision Problems versus
Optimization ProblemsOptimization Problems

z L ∈ P ⇔ Lopt ∈ P

Coherence Coherence (Decision Version)(Decision Version)

Input: N = (P,C), C is partitioned into
C = C– ∪ C+, a positive integer k
Question: Does there exist A⊆ P such
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k?

z Is Coherence ∈P ?
z Answer: we don’t really know.
z What do we know?

The Polynomial Time Class The Polynomial Time Class PP

z How can we prove that a decision
problem L ∈ P ?

z How can we prove that a decision
problem L ∉ P ?

The Nondeterministic The Nondeterministic
Polynomial Time Class Polynomial Time Class NNPP
z A decision problem L is decidable in

nondeterministic polynomial time iff
for each instance <x,k> and any
solution S, it can be verified in
polynomial time (|x|c) if S proves that
<x,k> is a yes-instance for L.

The Nondeterministic The Nondeterministic
Polynomial Time Class Polynomial Time Class NNPP
z For a decision problem L ∈NP and an

instance <x,k> we can determine
whether <x,k> is a yes-instance for L or
<x,k> is a no-instance for L in
exponential time.

z That is, we just have to try out each
candidate solution!

Coherence Coherence ∈∈ NNPP
zWhat is a possible solution/witness

for Coherence?

z Show
– The witness is “short”

– We can verify in a “short” time if the
witness is a correct solution.

PP versus versus NPNP
z A task that we can complete fast, we

can also complete slow(er).

z Thus: P ⊆ NP

z But: the converse does not
necessarily hold!

PP = = NP ?NP ?
z Million dollar question!
z Assumption: P ≠ NP
z We assume there is a decision problem L

such that L ∈P and L ∉NP.
z We say a problem is NP–hard if it is at

least as hard as any problem in NP.

z We say a problem is NP–complete if it is
(1) NP -hard and (2) also in NP itself.

(Classically) intractable (Classically) intractable

z An NP–hard decision problem is
viewed as (classically) intractable.

z To prove that P = NP it is enough to
show that there exists an NP–hard
problem that is in P !

z So far, nobody was able to do so …

Proving Proving NPNP--hardnesshardness

Let L be the problem we want to show
NP–hardness for.

z Show that there is an NP–hard
problem L’ that can be polynomial-
time reduced to L.

Polynomial-time
algorithm<x’, k’> ∈ L’? p(<x’, k’>) ∈ L?

yes yesif and only if

Proving Proving NPNP––hardnesshardness

z If L is NP–hard, then a polynomial-time
algorithm for L would also imply a
polynomial-time algorithm for L’.

z How do we find L’?
– There is a huge catalogue of problems that

are shown to be NP–hard, just pick one that
works without too much trouble.

– Not very difficult, but experience helps.

Coherence is Coherence is NPNP––hardhard

z We reduce from a problem called Max-Cut

z Max-Cut is known to be NP–complete
[GJ’79].

z More details in demo session tomorrow.

Corollary Corollary

z Coherence is NP-complete
– even for C = C-

Is Coherence (really) intractable?Is Coherence (really) intractable?

Reconsider / specify the task.
z Can we reduce the input space?
z Can we parameterize?

Reducing the input space: Reducing the input space: C C = = CC++

zWe can decide Coherence in
polynomial time if C = C+.

Reducing the input space: Is a Reducing the input space: Is a
network consistent?network consistent?
z A network is consistent if every edge

(constrained) can be satisfied.

zWe can decide in polynomial time
whether or not a network N = (P, C) is
consistent.

Reducing the input space: Reducing the input space:
Coherence for treesCoherence for trees

Reducing the input space: Reducing the input space:
Coherence for treesCoherence for trees

Reducing the input space: Reducing the input space:
Coherence for treesCoherence for trees

Reducing the input space: Reducing the input space:
Coherence for treesCoherence for trees

Reducing the input space: Reducing the input space:
Coherence for treesCoherence for trees

Reducing the input space: Reducing the input space:
Coherence for treesCoherence for trees

Reducing the input space: Reducing the input space:
Coherence for treesCoherence for trees

Reducing the input space: Reducing the input space:
Coherence for treesCoherence for trees

Every tree is a
consistent
network!

Is Coherence (really) intractable?Is Coherence (really) intractable?

Reconsider / specify the task.
z Can we reduce the input space?
z Can we parameterize?

Parameterized ComplexityParameterized Complexity

z Parameterized decision problem
z Parameterized Complexity Classes

–FPT
–W [1]

–W [2]
– …

Parameterized decision problemParameterized decision problem

z Like decision problem, but a
parameter (explicit or implicit) is
specified.

kk--Coherence Coherence (Parameterized (Parameterized
Decision Version)Decision Version)
Input: An (inconsistent) network N = (P,C),
C is partitioned into C = C– ∪ C+, a
positive integer k
Parameter: k
Question: Does there exist A⊆ P such
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k?

FixedFixed--Parameter TractabilityParameter Tractability

A parameterized decision problem L is
fixed-parameter tractable (fpt) if there
exists a constant α and an algorithm Φ
such that Φ decides if is a yes-
instance for L in time where f is
an arbitrary function of the parameter k.

FixedFixed--Parameter TractabilityParameter Tractability

kx,
αxf(k)⋅

Examples for Examples for FPTFPT running timesrunning times

instance size |x| = n, parameter k

2k n
28172k + n3

n91

nk
kkk +

RemarksRemarks

A problem that is NP–hard or NP –
complete for can be fixed-parameter
tractable for a chosen parameter!

A problem that is in P is fixed-
parameter tractable for any chosen
parameter.

kk--CoherenceCoherence

Input: An (inconsistent) network N = (P,C),
C is partitioned into C = C– ∪ C+, a
positive integer k
Parameter: k
Question: Does there exist A⊆ P such
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k?

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
z A network N is connected if for every

pair of nodes there exists a path in N.

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k,
then <N, k> is a yes-instance.

Proof.

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k,
then <N, k> is a yes-instance.

Proof. Pick a spanning
subtree of N.

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k,
then <N, k> is a yes-instance.

Proof. Pick a spanning
subtree of N.⇒
At least |P| edges
are satisfied!

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
z <N, k> instance for k-Coherence
z N connected
z If |P| > k then <N, k> is a yes-instance.
z Else |P| ≤ k.
z How much time does it take to decide

the answer for <N, k> with |P| ≤ k?
z |E| = ?

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
z <N, k> instance for k-Coherence
z N connected
z If |P| > k then <N, k> is a yes-instance.
z Else |P| ≤ k.
z How much time does it take to decide

the answer for <N, k> with |P| ≤ k?
z |E| ≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
z N is bounded in size in a function of k

• Problem Kernel

z Even if we have to try out every
possible solution, the number of those
is still a function of k

zWe can answer in fixed-parameter-
tractable time for parameter k

ProvingProving FPTFPT --MembershipMembership

z Give an algorithm
– Problem Kernel / Kernelization
– Bounded Search Tree

z Prove existence of a problem kernel
– Boundary Lemma

z Graph Minor Theorem
zMore details in demo session tomorrow.

How do we show that a (parameterized How do we show that a (parameterized
decision) problem is parameterized decision) problem is parameterized
intractable?intractable?
z Prove that the problem is hard for

class W [1] or class W [2] or ...

z Prove that: if the problem is in FPT,
then P = NP.

W W [1][1]

zFPT ⊆ W [1]

z Conjecture: FPT ≠ W [1]

z Hard for W [1]
– Problems that are likely not fixed-

parameter tractable
– Running times are something like nk

Prove that a (parameterized) Prove that a (parameterized)
problem is hard for class problem is hard for class W W [1][1]
z Via parameterized reduction from a

problem that is known to be hard for W [1]
and that further preserves the parameter.

z Similar idea as in NP–hardness proofs.
☺ Time permitted is in FPT (any function in

parameter is allowed, rest polynomial)
/ Parameter has to be preserved!

☺ Many of the “classic” NP–hardness
reductions in the literature are already
parameterized.

SummarySummary

z We investigated techniques from computer
science to prove (in)tractability for decision
problems and optimization problems.

z We also observed: If a special case of a
decision problem is (NP-)hard, then the
problem itself is (NP-)hard itself.

z Further: If we can prove that a problem is
tractable, then its special cases are tractable
as well.

Demo SessionDemo Session

Ulrike Stege (University of Victoria)
Iris van Rooij (TU Eindhoven)

TopicsTopics

zNP–completeness proofs
– Membership
– Polynomial-time reduction

zFPT–algorithms
– Technique of building a problem kernel
– Technique of bounded a search tree
– combination

TopicsTopics

zFPT –membership
– Existence of a problem kernel
– Graph Minor Theorem

z Parameterized intractability
– Parameterized reduction
– Not in FPT unless P = NP
– Membership in W [1]

Coherence Coherence (Decision Version)(Decision Version)

Input: An (inconsistent) network N = (P,C),
C is partitioned into C = C– ∪ C+, a
positive integer k
Question: Does there exist A ⊆ P such
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k?

Coherence is Coherence is NPNP––hardhard

We reduce from
Max-Cut (decision version)
Input : A graph G = (V, E). A positive integer m.
Question : Does there exist a partition of V into
sets A and R such that

z Max-Cut is known to be NP–complete
[GJ’79].

?},:),{(mRvAuEvu ≥∈∈∈

Max Cut (Example)Max Cut (Example)

A Rm = 4

Proving Proving NPNP--hardnesshardness

Let L be the problem we want to show
NP–hardness for.

z Show that there is an NP–hard
problem L’ that can be polynomial-
time reduced to L.

Polynomial-time
algorithm<x’, k’> ∈ L’? p(<x’, k’>) ∈ L?

yes yesif and only if

Coherence is Coherence is NPNP --hardhard

z Let (G,m) be an instance for Max Cut.
z We define an instance <N,k> for

Coherence as follows.
– P = V
– C = E
– C- = E
– k = m

z We still have to prove

<G,m> is a yes-instance for Max-Cut if and
only if <N,k> is a yes-instance for Coherence

N = G

<<GG,,mm> > is a yesis a yes--instance for Maxinstance for Max--Cut if and Cut if and
only ifonly if <<NN,,kk>> is a yesis a yes--instance for Coherence.instance for Coherence.

“⇒”
z Since <G,m> is a yes-instance for Max-Cut,

we can assume V be partitioned into A and
R. Further let .

z We show A is a solution for N. Consider an
edge e ∈ . Edge e is
satisfied!

z There are at least m = k many of those
edges!

mRvAuEvu ≥∈∈∈ },:),{(

},:),{(RvAuEvu ∈∈∈

((GG,,mm)) is a yesis a yes--instance for Maxinstance for Max--Cut if and Cut if and
only ifonly if ((NN,,kk)) is a yesis a yes--instance for Coherence.instance for Coherence.

“⇐”
z Let P’ be a solution for N.
zWe define a partition A = P’, R=V-P’

for G. Let e be satisfied in N. Then
e ∈ . Then

mpRvAuEvu =≥∈∈∈ },:),{(
},:),{(RvAuEvu ∈∈∈

Corollary Corollary

z Coherence is NP–complete
– even for C = C-

To determine whether a network To determine whether a network
is consistent is in is consistent is in PP..

Coherence for treesCoherence for trees

Every tree is a
consistent
network!

To determine whether a network To determine whether a network
is consistent is in is consistent is in PP..

Technique of Problem KernelTechnique of Problem Kernel

kk--Coherence Coherence (Parameterized (Parameterized
Decision Version)Decision Version)
Input: An (inconsistent) network N = (P,C),
C is partitioned into C = C– ∪ C+, a
positive integer k
Parameter: k
Question: Does there exist P’⊆ P such
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k?

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k,
then <N, k> is a yes-instance.

Proof.

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k,
then <N, k> is a yes-instance.

Proof. Pick a spanning
subtree of N.

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
Lemma. Let <N, k> be an instance for k-

Coherence, N connected. If |P| > k,
then <N, k> is a yes-instance.

Proof. Pick a spanning
subtree of N.⇒
At least |P| edges
are satisfied!

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
z <N, k> instance for k-Coherence
z N connected
z If |P| > k then <N, k> is a yes-instance.
z Else |P| ≤ k.
z How much time does it take to decide

the answer for <N, k> with |P| ≤ k?
z |E| = ?

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
z <N, k> instance for k-Coherence
z N connected
z If |P| > k then <N, k> is a yes-instance.
z Else |P| ≤ k.
z How much time does it take to decide

the answer for <N, k> with |P| ≤ k?
z |E| ≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
z N is bounded in size in a function of k

– N is a problem Kernel
z Even if we have to try out every

possible solution, the number of those
is still a function of k

zWe can answer in fixed-parameter-
tractable time for parameter k

kk--Coherence for connected Coherence for connected
networks is in networks is in FPTFPT
z N is bounded in size in a function of k

– N is a problem Kernel
z However: Often this is just the 1st step

of an fpt-algorithm.

Technique of bounded search Technique of bounded search
treestrees
zWe show using this technique that

the problem |C–|-Coherence is in FPT.

|C|C––||--Coherence Coherence (Parameterized (Parameterized
Decision Version)Decision Version)
Input: An (inconsistent) network N = (P,C),
C is partitioned into C = C– ∪ C+, a
positive integer k
Parameter: |C–|
Question: Does there exist P’⊆ P such
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k?

Technique of bounded search Technique of bounded search
trees trees –– smart exhaustive searchsmart exhaustive search

|C|C––||--CoherenceCoherence

Input: An (inconsistent) network N = (P,C),
C is partitioned into C = C– ∪ C+, a
positive integer k
Parameter: |C–|
Question: Does there exist P’⊆ P such
that |{(p,q) ∈C : (p,q) is satisfied}| ≥ k?

|C|C––||--Coherence is in Coherence is in FPTFPT

z Generalize |C–|-Coherence to |C–|-
Annotated Coherence

z Apply technique of bounded search
tree to |C–|-Annotated Coherence

Generalization of Generalization of |C|C––||--Coherence Coherence

|C–|-Annotated Coherence
Input: A network N = (P, C). Here, P is

partitioned into U*, P*, and R*, and C is
partitioned into C+ and C-. A positive integer
k.

Parameter: |C–|
Question: Does there exist a partition of P into

P’ and R such that P*⊆ P’, R’ ⊆ R, and at
least k edges are satisfied by A and R?

|C|C––||--Coherence is a special case Coherence is a special case
of of |C|C––||--Annotated Coherence Annotated Coherence

An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence

<N, k>

<N1, k1> <N2, k2>

<N11, k11>
<N22,
k22>

<N12,
k12>

<N21,
k21>

An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence

P = P- ∪ P+<N, k>

An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence

<N, k>

p ∈ P-

<N1, k1>

Select p<N2, k2>

Do not select p

<N, k>: instance for |C-|-Annotated Coherence
z N = (P, C)
z P = U’ ∪ P’ ∪ R’, and
z P = P- ∪ P+.
z Let p ∈ U’∩ P-.
Create in the search tree two children of <N, k>.
z <N1, k1>: N1 = (P1, C1) with U1’ = U’\{p},

P1’ = P’ ∪ {p}, R1’ = R’, k1 = k
z <N2, k2>: N2 = (P2, C2) with U2’ = U’\{p},

P2’ = P’, R2’ = R’ ∪ {p}, k2 = k.

((PP--))--ElementElement--decisiondecision BranchingBranching--
RuleRule

How big is the search tree after applying How big is the search tree after applying
the reduction rule as often as possible?the reduction rule as often as possible?

<N, k>

<N1, k1> <N2, k2>

<N11, k11>
<N22,
k22>

<N12,
k12>

<N21,
k21>

How big is the search tree after applying How big is the search tree after applying
the reduction rule as often as possible?the reduction rule as often as possible?

<N, k>

<N1, k1> <N2, k2>

<N11, k11>
<N22,
k22>

<N12,
k12>

<N21,
k21>

|| −P

An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence
z 2|P-| ≤ ?
z |P-| ≤ 2|E-|
z 2|P-| ≤ 22|E-|

z Running time so far: 22|E-||N|
z If not solved: How does an instance

look like after this branching process?

An An FPTFPT--Algorithm for Algorithm for |C|C––||--
Annotated CoherenceAnnotated Coherence
z In N are only vertices from P+ left! That

means we are left with only positive
undecided constraints.

z we can clean up the decided
constraints, i.e. we remove them from
the network

z Afterwards we can also remove the
isolated vertices

|C|C––||--Annotated Coherence Annotated Coherence
with with P P = = PP++
Input: A network N = (P, C). Here, P is

partitioned into U*, P*, and R*, and
C=C+. A positive integer k.

Parameter: |C–|
Question: Does there exist a partition of P

into P’ and R such that P*⊆ P’, R’ ⊆ R,
and at least k edges are satisfied by A
and R?

Reduction RuleReduction Rule

z Let p be a vertex where all neighbors
are already selected. If |N(v) ∩ A*| >
|N(v) ∩ R*| then accept p, else reject p.

If all nodes that are selected
are in A*, then P = A.

If all nodes that are selected
are in R*, then P = R.

Otherwise network is
inconsistent.

CorollaryCorollary: : |C|C++||--Coherence Coherence ∉∉ FPTFPT
(unless (unless PP = = NPNP))

Parameterized ReductionParameterized Reduction

	Implementing the Tractable-Design Cycle: Definitions and Techniques�
	Implementing the Tractable-Design Cycle: Complexity Analysis—Definitions and Techniques�
	Outline
	Which functions can describe �cognitive systems?
	Which functions can describe �cognitive systems?
	Which cognitive systems are tractable?
	Computational Problems
	Optimization Problems
	Optimization Problems
	Optimization Problems
	Computational Problems
	Decision Problems
	Decision Problem
	Decision Problems
	Computational Problems
	Decision Problems versus Optimization Problems
	Decision Problems versus Optimization Problems
	Decision problem is tractable  optimization problem is tractable�
	The Polynomial Time Class P
	The Polynomial Time Class P
	Decision Problems versus Optimization Problems
	Lopt  P  L P
	Decision Problems versus Optimization Problems
	Coherence for C = C+
	Coherence for C = C+ �(opt. Version)
	L  P  Lopt  P
	Decision Problems versus Optimization Problems
	Coherence (Decision Version)
	The Polynomial Time Class P
	The Nondeterministic Polynomial Time Class NP
	The Nondeterministic Polynomial Time Class NP
	Coherence  NP
	P versus NP
	P = NP ?
	(Classically) intractable
	Proving NP-hardness
	Proving NP–hardness
	Coherence is NP–hard
	Corollary
	Is Coherence (really) intractable?
	Reducing the input space: C = C+
	Reducing the input space: Is a network consistent?
	Reducing the input space: Coherence for trees
	Reducing the input space: Coherence for trees
	Reducing the input space: Coherence for trees
	Reducing the input space: Coherence for trees
	Reducing the input space: Coherence for trees
	Reducing the input space: Coherence for trees
	Reducing the input space: Coherence for trees
	Reducing the input space: Coherence for trees
	Is Coherence (really) intractable?
	Parameterized Complexity
	Parameterized decision problem
	k-Coherence (Parameterized Decision Version)
	Fixed-Parameter Tractability
	Examples for FPT running times
	Remarks
	k-Coherence
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	Proving FPT -Membership
	How do we show that a (parameterized decision) problem is parameterized intractable?
	W [1]
	Prove that a (parameterized) problem is hard for class W [1]
	Summary
	Demo Session
	Topics
	Topics
	Coherence (Decision Version)
	Coherence is NP–hard
	Max Cut (Example)
	Proving NP-hardness
	Coherence is NP -hard
	<G,m> is a yes-instance for Max-Cut if and �only if <N,k> is a yes-instance for Coherence.�
	(G,m) is a yes-instance for Max-Cut if and �only if (N,k) is a yes-instance for Coherence.�
	Corollary
	To determine whether a network is consistent is in P.
	Coherence for trees
	To determine whether a network is consistent is in P.
	Technique of Problem Kernel
	k-Coherence (Parameterized Decision Version)
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	k-Coherence for connected networks is in FPT
	Technique of bounded search trees
	|C–|-Coherence (Parameterized Decision Version)
	Technique of bounded search trees – smart exhaustive search
	|C–|-Coherence
	|C–|-Coherence is in FPT
	Generalization of |C–|-Coherence
	|C–|-Coherence is a special case of |C–|-Annotated Coherence
	An FPT-Algorithm for |C–|-Annotated Coherence
	An FPT-Algorithm for |C–|-Annotated Coherence
	An FPT-Algorithm for |C–|-Annotated Coherence
	(P-)-Element-decision Branching-Rule
	How big is the search tree after applying the reduction rule as often as possible?
	How big is the search tree after applying the reduction rule as often as possible?
	An FPT-Algorithm for |C–|-Annotated Coherence
	An FPT-Algorithm for |C–|-Annotated Coherence
	|C–|-Annotated Coherence �with P = P+
	Reduction Rule
	Corollary: |C+|-Coherence  FPT (unless P = NP)
	Parameterized Reduction

