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CONTENTS:
e Image pyramids with graphs ...

e ... for Image Partitioning ...
e ... with Minimal Spanning Tree (MST)
TSP in 1D

e simple and difficult solutions
e a too simple Algorithm

e Problems with identical solutions
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Image Pyramids

e Hierarchical structures - Pyramids,
e Properties of Pyramids:

— Structure,
* horizontal and vertical relations

— Content of the cells,

* numeric, symbolic or both

— Processing of a cells

KJune 13, 2005 Properties of Image Pyramid /
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Properties of Image Pyramid

e Regular image pyramid

— log() height < constant reduction factor
— Lack of shift invariance

— Confined to globally defined sampling grid
e [rregular image pyramid

— Biological systems, e.g. human retina not regular
— Perturbations may destroy the regularity of regular pyramids

— In general not log() height

See book of Jolion and Rosenfeld |5] for more details

K llllllll , 2005 Irregular Graph Pyramid /
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Irregular Graph Pyramid

e Planar connected attributed graphs (G, Gy)
e Pyramid is a sequence of (G, Gi), 0 <k <h
e Dual graph contraction (DGC) [6]

Graph
contraction (DGC)

Image Dual graphs

KJune 13, 2005 Bottom-Up Construction by Dual Graph Contraction /
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Bottom-Up Construction by Dual Graph Contraction

Input: Graph G = (V, E) and its dual graph G = (F, F)
1. while { further abstraction is possible } do

(a) select contraction kernels CK C E
(b) dual edge contraction G/CK and
(¢) simplification of dual graph G/CK \ SK,

(d) apply reduction functions to compute content of new reduced level.

Output: Irregular graph pyramid

Simplification kernel SK removes redundant self-loops and multi-edges.
Content influences steps (a) and (d);
Operation is purely structural!

KJ llllll , 2005 Dual Graph Contraction [6]: (1) Edge Contraction /
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Dual Graph Contraction [6]: (1) Edge Contraction

3 Cases: A B

C
Gk(V, E) a)—»@— O 4/'_>
K k41
Y

G/ie;

... preserves the connectivity, but can produce multiple edges and self-loops

lllllll , 2005 (2) Simplification /
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(2) Simplification

3 Cases: B
. -
6.6 T,

G\ {e}

Edge contraction < Edge removal in dual graph

Multiple edges and self loops <> Vertices of degree 2 and 1 in G.

C

o
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Dual Graph Contraction Summary /
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Dual Graph Contraction Summary
Level representation contract / remove conditions
0 (Go, Go)
) contraction kernel Ky ; forest, depth 1
(Go/Ko1, Go\ Koy)
l redundant multi-edges, selt-loops |deg v < 2
1 (G, GY)
contraction kernel K o forest, depth 1
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Image Partitioning by Graph Pyramids

e Low level cue image segmentation cannot produce a final “good” segmentation.
e Grouping method should have the following [4]:

— create a hierarchy [10],
x graph pyramids

— capture perceptualy important groupings,
x internal and external contrast

— run in linear time,

* Minimum Spanning Tree (MST) based algorithm.

KJune 13, 2005 Minimum Spanning Tree /
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Minimum Spanning Tree

e Graph G(V, E, w) connected and attributed by weight w
—w:e € F — R

e Goal : Find the spanning tree T" with the smallest weight )
— Kruskal’s algorithm [7]
— Prim’s algorithms [9)]
— Boruvka’s algorithm |2]

KJune 13, 2005

> w(e) — min.
€T

Boruvka’s Algorithm [2] /
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Borivka’s Algorithm [2]

e Input: Graph G(V, E).

1. MST = empty edge list.
2. Yv € V make a list of trees L.
3. while {there is more than one tree in L} do

— each tree T" € L finds the edge e with the minimum weight
which connects T" to G \ T and add edge e to M ST

— edge e merges pairs of trees in L.

e Output: Minimum weight spanning tree - M ST

KJune 13, 2005 Boruvka’s Algorithm and Dual Graph Pyramid /
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Boruvka’s Algorithm and Dual Graph Pyramid

e dual graph contraction (DGC) contracts all trees T" € L in step 3.

G, o Apex

(AN

DGC

MST(apexr) = K

KJune 13, 2005 Some Results: Hierarchies /
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Some Results: Hierarchies

Ramp: size= 223 x 110; 7 = 1000

Level 0 (24 753) Level 8 (44)  Level 9 ( Level 10 ( Level 14 (

Woman: size= 116 x 261; 7 = 300

Ve 0 f 0

Level 0 (30 276) Level 10 ( Level 12 ( Level 14 ( Level 16 (

Level k (#|CCY)

K llllllll , 2005 Some Results: Hierarchies, cont. /
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Some Results: Hierarchies, cont.
Object45 size= 128 x 128; 7 = 300
/f-d
Level 0 (16 384) Level 8 (129) Level 10 ( Level 12 ( Level 14 (
Monarch: size= 768 x 512; 7 = 300
Level O (393 216) Level 14 (108) Level 16 (57) Level 20 (25) Level 22 (18)
\__ sune 15, 200 TSPin1D /
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TSP in 1D

e in 1D: Cities are ordered

® Elxmina Lmax

e length of circuit = 2(Tmar — Timin)

e other solution exists:

e For n cities 2" 2 solutions exist!

KJune 13, 2005

”Simple TSP-Configurations” in 2D /
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”Simple TSP-Configurations” in 2D

e All cities on a line = 1D Problem
ax; + by; = c for some a,b,c € R

e n = 3 triangle is trivial.
e Are large number of cities DIFFICULT?

e not always, e.g.:

Triangle 5 Cities
o o o
o e , °
o
TRIVIAL DIFFICULT

,,,,,,,,,,,,

12 Cities

SIMPLE

A Simple Algorithm /
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A Simple Algorithm

Given: n cities Cj,1=1,...,n

1. find start city 17 = C;, k=2

2. while { 3 city ) = C; to visit } do
connect Tj._1 to next closest city T, = @), k=k+1

+ complexity O(n*search for closest city)
— does not always find the best tour
-+ but sometimes succeeds

? when? How often?

KJune 13, 2005 How to Organize/Partition City-Space? /
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How to Organize/Partition City-Space?

1. Raster cell with/without city

2. Graph G(V, E): city = vertex v € V; edges e € E7
3. complete graph: £ =V xV

4. Delaunay triangulation £ C V' x V

5. Voronoi Diagram

KJune 13, 2005 Voronoi Diagramm, Delaunay Triangulation /
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Voronoi Diagramm, Delaunay Triangulation

\

-'-F'-F ——
gl _ —
Delaunay Voronoi Delaunay
tricngulation diagram and Voronot

\June 13, 2005 Voronoi Diagram, Time and Space Complexity /
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Voronoi Diagram, Time and Space Complexity

The Voronoi Diagram is the dual of the Delaunay Triangulation.

e Time: O(nlogn)
e Space O(n)

Lower bound for computing Voronoi diagram is 2(n logn),

for special cases it is linear in time O(n) [1],

e.g. when the sites (points) are on the vertices of a convex polygon
Additional properties help to reduce the complexity of the problem.

KJune 13, 2005 Pyramid: Reduce Resolution /
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Pyramid: Reduce Resolution

otk W o=

. larger raster cells contain clusters

preserve approximate location
reduce number of cities
repeat until solution becomes trivial

refine solution top down to the base level

KJune 13, 2005 Graph Pyramid: Reduce Number of Edges /
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Graph Pyramid: Reduce Number of Edges

Number of cities |V | = n;
number of edges |F/| varies;
embedding in the plane has faces F'.
Related by Euler formula: |V| — |E| + |[F| =1

GV, F) |E| | F| comment

complete graph (Z’) — contains TSP solution
Triangulation 3(n—1)—=b|2(n—1)—b|3 < b < nedges on boundary
MST(G) n—1 0 sum of edges minimal
triangulated TSP | 2n — 3 n—2 is the goal (b=n)

K TSP with triangle inequality /
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TSP with triangle inequality

Fakts:

e TSP with triangle inequality: That is, for any 3 cities A, B and C, the distance
between A and C must be at most the distance from A to B plus the distance
from B to C. Most natural instances of TSP satisty this constraint.

e MST is a natural lower bound for the length of the optimal route.

e In TSP with triangle inequality, it is possible to prove upper bounds in terms
of the minimun spanning tree — 'Christofides Heuristics’ . ..

KJune 13, 2005 Christofides’ Heuristics [3] /
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Christofides’ Heuristics [3]

\

e Construct the minimal spanning tree T

e ['ind the perfect matching M among vertices with odd degree
e Combine the edges of M and T to make a multigraph G

e ['ind an Euler cycle in G by skipping vertices already seen

Christofides’ algorithm combines the minimum spanning tree with a solution of
minimum-weight perfect matching.
This gives a TSP tour which is at most 1.5 times longer than the optimal tour.
It is known, however that there is no polynomial time algorithm that finds a tour of

length at most 1 + 515 times the optimal, unless P=NP [8].

June 13, 2005 TSP-Configurations with the same tour length /
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TSP-Configurations with the same tour length

V| =12,|E| =21, |F| =10

,,,,,,,,,,,,

V| =24, |E| =45, |F| = 22

Inserting Additional Cities /
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Inserting Additional Cities

e ... along solutions does not change length of solution.

e ... along solutions does not change order of cities.

e after insertion the simple algorithm finds solution more often

e [s there a sampling theorem for distances along the solution?

e What is the number of problems that the simple algorithm can solve optimally?
e |simple problems| > |difficult problems|?

e Can we characterize and recognize simple problems?

26
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