Prof. Greg Francis 7/31/23

Brain scans

PSY 200

Greg Francis

Lecture 03

How to study the brain without killing someone.

Purdue University

Scanning

- Technology provides insight into brain processes
 - EEG recordings
 - MRI
 - Functional MRI
- Non-invasive
- Maps of brain activity
- The goal is to relate brain events to cognitive events

Purdue University

(A)

1

2

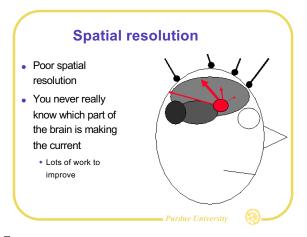
Resolution For almost every technique we have to worry about its ability to discriminate differences in Space: which place is active? Time: when does something happen? Finer resolution is usually better But can be difficult to deal with so much

3

Electroencephalogram

- EEG
- The brain produces
 electrical activity
- Put electrodes on the head

Purdue University


4

• Watch the electrical current change through time while reading sentences (averaged across many trials) • Good temporal resolution • Kutas & Hillyard (1980) Semantic anomaly NATOO NOONX IT WAS HIS FIRST DAY AT WORK. SOONX HE SPREAD THE WARM BREAD WITH SOCKS. NOONX HE SPREAD THE WARM BREAD WITH SOCKS.

5

Brain maps You can analyze the EEG signals in many different ways Compare the signal strength for different situations Ayahuasca is a Brazilian psychoactive tea Before drinking Ayahuasca After drinking Ayahuasca

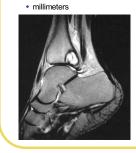
Prof. Greg Francis 7/31/23

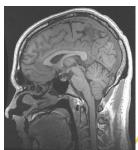
Magnetic Resonance Imaging

- Magnetic field forces protons in your body to line
 - pulses of radio into field bounces protons around
 - as they return to normal position, they emit a signal that can be decoded into a map

7

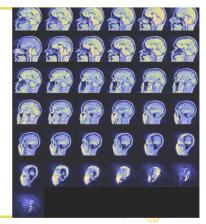
8


Magnetic Resonance Imaging


- MRI Scans: Like an x-ray machine, but can look at soft tissue (like lungs, heart,..)
 - Very good spatial resolution

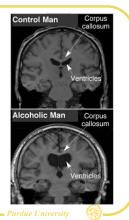
Magnetic Resonance Imaging

- MRI Scans: Like an x-ray machine, but can look at soft tissue (like ankles, my brain,..)
 - Very good spatial resolution

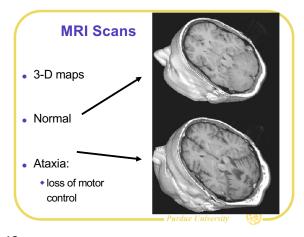

9

10

MRI Scans


- MRI provides a "slice" at a time
- Take multiple slices to build up full image

Nobel prize winning work!


MRI Scans

- Can identify anatomical differences between brains
- Alcoholic has larger ventricles and thinner corpus callosum
- Note, comparing across brains is a bit
 - Everyone's brain is a bit different

11

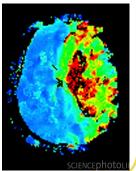
Prof. Greg Francis 7/31/23

MRI Scans

- · Non-invasive, no side effects
- · Allows early detection of brain disease, tumors,...
- Fantastic spatial resolution
- But...
 - it only shows structure
 - no way to know what a brain area does

13

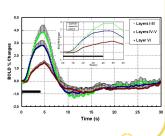
14


Functional MRI

- Just like MRI, but with a new analysis
 - MRI differentiates between different types of tissue (cell
 - Functional MRI differentiates between active and inactive neurons: concentration of oxygen
 - The measurement is called the "blood oxygen level dependent" (BOLD)
 - » It roughly tracks the flow of blood in the brain
 - » More active neurons recruit more blood

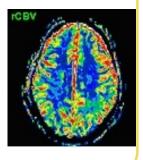
Functional MRI

- · Color maps show strongest "responses"
- . E.g., fMRI scan of a woman after a stroke
 - Blue/green: normal blood flow
 - · Red/black: abnormal blood flow

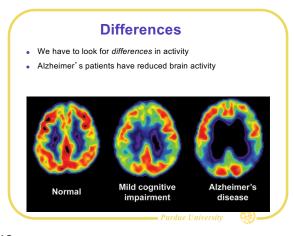


15

16


Functional MRI

- Very good spatial resolution
 - millimeters
- Pretty good temporal resolution
 - Seconds
 - (Silva, 2002)


Scanning

- Consider this fMRI scan
- It shows regional cerebral blood volume (rCBV)
- You cannot tell how/if different regions are involved in different activities
 - Breathing
 - Digestion
 - Thinking about exams

17

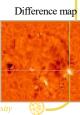
Prof. Greg Francis 7/31/23

A simple experiment

- Suppose you run an fMRI experiment where a person alternates between seeing a blank screen and a face
- You take multiple fMRI scans with half recording brain activity during the blank and half recording brain activity during the face
- Add them up pixel by pixel for each condition

Viewing blank

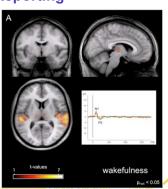

Viewing face


19

Subtraction method

- Subtract the fMRI signals produced by one condition from the fMRI signals produced by another condition
- The difference map indicates those brain regions that are involved in the different cognitive tasks
- It requires a sophisticated statistical analysis to avoid false positives!

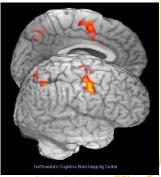
Viewing blank



20

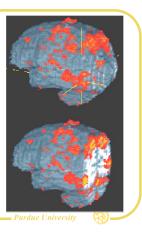
Reporting

- What is usually reported is just the difference map
- Colors mark places in the brain that are statistically different between conditions
- Czisch et al. (2009) for rare tones vs. frequent tones
- The map would be different if it compared rare tones versus speech



21

22


Functional MRI

- · Color maps show strongest "responses"
- e.g., during a task that requires covert spatial attention compared to one that does not require attention

Functional MRI

- · When moving a pointer to a target box compared to no movement
 - "activity" in areas involved in vision, planning, and motor control

23

Prof. Greg Francis 7/31/23

Connectome

- You can use similar technology (diffusion spectral imaging) to focus on particular types of cellular material
 - E.g., identify axons (discussed later) that connect brain cells
- Gives an anatomical map of how information can travel

Connectome

Gives an anatomical map of how information can travel

26

28

25

Limitations

- Brain scans do not really tell us how the brain works
 - the scans just tell us approximately where in the brain something occurs
 - sometimes it can tell approximately when
- Even trying to find the place may be problematic
 - Lots of cognitive abilities involve many different areas of the brain
- Most theories of cognition are derived from experimental psychology
 - Brain studies explore how to implement the theories

Purdue University

Common misconception

- Brain scans demonstrate a physiological basis to things that were thought to be emotionally or cognitively based
 - e.g., MRI scans of stutters
 - in fact, all behavioral traits are physiologically based

Purdue Universit

(F)

27

Conclusions

- Lots of research in this area
- Technology is improving in many ways
- There are many other types of scanning technologies
 - Computerized Axial Tomography (CAT)
 - Diffusion tensor imaging (DTI)
 - Single Photon Emission Computed Tomography (SPECT)
 - Near Infrared Spectroscopic Imaging (NIRSI)
 - Magnetoencephalography (MEG)
 - Positron Emission Tomography (PET)

Purdue University

Next time

- How do we use brain scans to study cognition?
- How good are the scans?
- What is really being measured?
- How to read someone 's mind.

Purdue University

保

29