MAKING JUDGMENTS

PSY 201: Statistics in Psychology

Lecture 01
Statistics are everywhere

Greg Francis
Purdue University

Fall 2023
we have to make judgments all the time

- Do nicotine patches help people stop smoking?
- Is Pepsi better than Coke?
- How is alcohol consumption related to depression?
- Is this a good buy for a stereo?
- ...
people are not very good at answering these kinds of questions. we make systematic errors (take PSY 200, PSY 285 or PSY 318)
people in the "know" can take advantage of these tendencies

A PROBLEM

- politicians
- retailers
- drug companies
- "activists"

Let's look at an example

DECISION MAKING

Imagine you are getting a loan to purchase a car. You get three offers from different institutions. For each one you have to put some money down up front, and you don't have a lot of available cash. The loans also differ in interest rate. A higher rate means you will end up paying more for the loan. You estimate that each 0.1% increase in the interest rate is going to cost you about $\$ 200$ over the life of the loan.

Bank	Money down	Interest rate
$1^{\text {st }}$ Federal	$\$ 2000$	5.3%
United Savings	$\$ 2000$	5.6%
National Federated	$\$ 2600$	5.0%

DECISION MAKING

Imagine you are getting a loan to purchase a boat. You get three offers from different institutions. For each one you have to put some money down up front, and you don't have a lot of available cash. The loans also differ in interest rate. A higher rate means you will end up paying more for the loan. You estimate that each 0.1% increase in the interest rate is going to cost you about $\$ 200$ over the life of the loan.

Bank	Money down	Interest rate
$1^{\text {st }}$ Federal	$\$ 4000$	8.3%
United Savings	$\$ 4900$	8.0%
National Federated	$\$ 4600$	8.0%

AVOIDING COLDS

- Many people recommend the herb echinacea to reduce the severity of colds and/or to increase your immunity to getting a cold
- What should happen if echinacea does work?
- What should happen if echinacea does not work?
- Why is it popular?

SIGNIFICANCE

- people are easily influenced by the context in which they make decisions
- this is a problem, because context is easily (and subtly) manipulated
- it is important to learn how to make decisions properly
- STATISTICS
- it is not always easy...but it is worth it
(1) Descriptive statistics
- How to describe data.
- Using graphs.
- How to summarize data.
(2) Inferential statistics
- Hypothesis testing.
- Comparing descriptive statistics.
- Designing good experiments.

WHY IS IT HARD?

- several reasons
- Little differences in presentation can make a big difference in understanding.
- It is hard to get good measurements.
- It involves mathematics.
- It goes against our intuitions (anecdotal evidence).
- If you don't ask the right type of question it is worthless.
- Sometimes the answer is "I don't know."

TEXTBOOK

- On-line, free (to you). Set up instructions in the paper copy of the syllabus.
- Readings are assigned and monitored (10% of your class grade)
- Finishing a reading means that you answer the questions at the bottom of the page, or that you go through the entire demonstration/simulation
- Due dates and times are listed in the syllabus. The specific sections to read are listed on the Reading Assignments page on the textbook web site

COURSE OUTLINE

- various types of hypothesis testing
- Proportions, correlations
- Two sample means
- Two sample proportions, correlations
- EXAM 3 (10\%)
- ANOVA
- Multiple testing
- Contrasts
- Power
- Dependent
- FINAL (15\%) (cumulative)
- Beware scheduling of the fina
exam!
- statistical terms
- describing data
- percentiles
- normal distribution
- correlation
- EXAM 1 (10\%)
- Significance tests
- probability
- signal detection theory
- hypothesis testing
- power
- estimation
- EXAM 2 (10\%)

HOMEWORK

- homework counts for 20% of your class grade
- finishing means that you get the correct answer (unlimited guesses)
- Due dates and times are listed in the syllabus. The specific questions are listed on the Homework Assignments page of the textbook web site

STATLAB

ATTENDANCE

- On-line experiments where you generate your own data and then do a statistical analysis (15\% of your class grade)
- You need to complete all the questions to get credit for a lab assignment
- Due dates are listed on the syllabus
- Mandatory, we will check every class period (5\% of your class grade)
- You are allowed 6 misses before you are penalized

PRACTICE EXAMS

- I have posted practice exams on the course web site. You need to complete the exam and submit it to the TA by the date/time indicated in the syllabus (5% of your class grade)
- Use the feedback from the TA to prepare for the real exam
- The textbook provides nice tools for calculating many things.
- Oftentimes the homework requires that you use those tools
- It is useful to have some skills with a spreadsheet to perform simple computations and to format data

COMPUTER SOFTWARE

- straight scale
- $98 \%-100 \% \mathrm{~A}+$
- $93 \%-97 \% A$
- $90 \%-92 \% A-$
- $88 \%-89 \%$ B+
- $83 \%-87 \%$ B
- $80 \%-82 \%$ B-
- $78 \%-79 \%$ C+
- 73\% - 77\% C
- $70 \%-72 \%$ C-
- 68\%-69\% D+
- $63 \%-67 \%$ D
- $60 \%-62 \%$ D
- $0 \%-59 \%$ F
- Psychological Sciences Building

Room 3186
494-6934

- Monday, Wednesday, Friday

2:00-3:00 pm
or by appointment.

- email: gfrancis@purdue.edu

LECTURE NOTES

TEACHING ASSISTANT

- reduced format of 6 slides to a page
- available on the class web page
http://www.psych.purdue.edu/~gfrancis/Classes/PSY201/indexF23.html
- Victoria Jakicic
- OFFICE: PSYCH 3188
- OFFICE HOURS: Tuesday and Thursday, 1:00-2:30 pm
- Email: vjakicic@purdue.edu

PSY 201: Statistics in Psychology

- variables:
- independent
- dependent
- measurement scales
- nominal
- ordinal
- interva
- ratio
- descriptive statistics

What is our national security threat?
Lecture 02
Measurement scales
Descriptive statistics
What is our national security threat?

Greg Francis

Purdue University

Fall 2023
factors that affect data e.g.
study performance of college students taking a statistics course variables include

- teaching style
- age
- SAT scores
- class grade
- study effort
- hair color..

VARIABLES

DEPENDENT VARIABLES

e.g.
class grade
GRE scores

DEPENDENT VARIABLES

INDEPENDENT VARIABLES

－researchers are interested in how dependent variables change as other variables change
－see how the dependent variables depend on other variables）
－other variables are called independent variables
－researcher either keeps track of or controls the values of independent variables

two types

（1）researcher manipulates variable
e．g．drug dosage，teaching style，．．．
（2）variable classifies
e．g．hair color，eye color，SAT scores，．．．
study wants to know how the dependent variable changes with changes in the independent variables

LEVELS OF VARIABLES

independent variables can have different levels
e．g．
three methods of teaching style
（1）Lecture．
（2）Discussion．
（3）Videoconferencing

EXAMPLE

Does gasoline type affect car speed？

－take a car

－fill it with different types of gasoline
－measure top speed
－keep many things constant
－same driver
－same car
－same course
－same weather
－．．．．
if you started changing these，they would become independent variables

VARIABLES

MEASUREMENT

- independent variable: gasoline type
- levels of independent variable
- Amoco
- Sunoco
- Crystal Flash

- Marathon
- ...
- dependent variable: auto speed
- studies need to identify variables and measure them
- different variables have different scales of measurement
- four scales of measurement:
least precise to most precise
- nominal
- ordinal
- interval
- ratio

NOMINAL SCALE

- classification of objects into categories
- e.g.
- nationality
- color of eyes
- gender
- names of objects
- no order to the categories!

NOMINAL SCALE

- two key properties
- data categories are mutually exclusive.
- data categories have no logical order.
- numbers can designate categories
(1) blue eyes
(2) brown eyes
(3) green eyes
- but the order of numbers does not imply order of categories, because there really is no order
- ordered classification
- e.g.
- grading system A,B,C,D,F
- warmth: cold, cool, warm, hot
- aggressive, timid
- order is important and means something

ORDINAL SCALE

- but size of number does not correspond to amount of relevant characteristic
- e.g., warm (3) does not necessarily have 2 more units of warmth than cold (1)

temperature
- numbers can be used to designate categories
- e.g. warmth
(1) cold
(2) cool
(3) warm
(2) hot
- order of numbers agrees with order of categories

ORDINAL SCALE

characteristics

- data categories are mutually exclusive.
- data categories have some logical order.
- data categories are scaled according to the amount of the particular characteristic they posses.

USING SCALES

－One needs to pick items that have a＂natural＂scale to convey certain types of information
－Thus，for example，colors are typically at the nominal scale of measurement
－this makes them a poor choice for labeling of ordinal data because people do not automatically know what the different colors mean
－this was a problem for the National security warning system，which used colors to indicate different threat levels
－Which is more severe：green threat or blue threat？

MATCHING SCALES

INTERVAL SCALE

－equal unit scale
－e．g．
－temperature（Fahrenheit or Celsius）
－IQ scores（try to be）
－most tests
－no beginning to scale
－zero point is just another category

－The problem was that the scales of threat（ordinal scale）and color （nominal scale）do not match．Thus，news reports of the threat level invariably do not list only the color but also the associated phrase with each report．The color scale was of no use at all（they were dropped in 2011）．

INTERVAL SCALE

－numbers can be used to designate categories
e．g．
－ $22^{\circ} \mathrm{F} \rightarrow$ level of heat
－ $25^{\circ} \mathrm{F} \rightarrow$ level of heat
－ $28^{\circ} \mathrm{F} \rightarrow$ level of heat
－order of numbers agrees with order of categories
－number differences agree with characteristic differences（e．g．， $3^{\circ} \mathrm{F}$ ）

- Intelligence quotient scores
- 50 IQ
- 100 IQ
- 150 IQ
- an adult with a 50 IQ should have 50 fewer units of intelligence than a person with a 100 IQ
- a person with a 100 IQ should have 50 fewer units of intelligence than a person with a 150 IQ
- however, you cannot say that a genius (150 IQ) is 1.5 times as intelligent as an average (100 IQ)

WHY ZERO MATTERS

- I can create an equivalent interval scale that preserves all the differences

$$
\mathrm{NEW}_{I Q}=\mathrm{OLD}_{\mathrm{IQ}}+20
$$

- differences are still the same
- $150 \rightarrow 170$
- $100 \rightarrow 120$
- $50 \rightarrow 70$
- but the ratios are all different 170 is not 1.5 times 120 ! Multiplication makes no sense!
- if zero meant absence of trait, I could not create an equivalent interval scale, zero would have to correspond to zero, and nothing else.
- zero point
- 0 temperature does not mean no heat
(in F and C)
- $0 I Q$ does not mean no intelligence
- $50^{\circ} \mathrm{F}$ is not twice as hot as $25^{\circ} \mathrm{F}$.
- an IQ of 100 is not twice as smart as an IQ of 50

INTERVAL SCALE

characteristics

- data categories are mutually exclusive.
- data categories have some logical order.
- data categories are scaled according to the amount of the particular characteristic they posses.
- equal differences in the characteristic are represented by equal differences in the numbers.
- the value 0 is just another value on the scale.

RATIO SCALE

- what we normally think of as measurement
- e.g.
- height
- weight
- energy
- zero point corresponds to the lack of a characteristic

RATIO SCALE

- numbers can be used to designate categories e.g.
- 25 meters \rightarrow distance
- 5 meters \rightarrow distance
- 0 meters \rightarrow no distance
- order of numbers agrees with order of categories
- number differences agree with characteristic differences

RATIO SCALE

- Kelvin temperature scale measures heat energy
- e.g.
- $0^{\circ} \mathrm{K} \rightarrow$ no heat energy
- $25^{\circ} \mathrm{K} \rightarrow$ heat energy
- $50^{\circ} \mathrm{K} \rightarrow$ heat energy
- zero point
- 0 distance means no distance
- $0^{\circ} \mathrm{K}$ temperature means no heat
- 50 meters is twice as far as 25 meters
- $50^{\circ} \mathrm{K}$ is two times as much heat energy as $25^{\circ} \mathrm{K}$.
- data categories are mutually exclusive.
- data categories have some logical order.
- data categories are scaled according to the amount of the particular characteristic they posses.
- equal differences in the characteristic are represented by equal differences in the numbers.
- the value 0 reflects the absence of the characteristic.
- how do you identify what scale is appropriate?
- measures at a "higher" scale can also be used at a lower scale, but not vice-versa
- the correct scale often depends on how you intend to use the data, and not so much on the intrinsic properties of the things you measure
- e.g. I can use person names as
- nominal scale (code different people)
- ordinal scale (alphabetize by name)

SCALES

- qualitative variables: generally discrete categories
- nominal data
- ordinal data
- quantitative variables: generally continuous
- interval data
- ratio data
- sometimes data looks like it is qualitative when it is actually quantitative (e. g., temperature readings do not usually use decimals, but they could)

POPULATION

- all members of a specified group
- e.g.,
- all students in this class
- all Purdue students
- all patients with Alzheimer's disease
- measure of a population characteristic is called a parameter
- e.g.,
- mean grade in class
- highest grade in class
- lowest grade in class

SAMPLE

CONCLUSIONS

－a subset of all members of a specified group，e．g．
－all students in this class，relative to all Purdue students
－all Purdue students，relative to all college students nationwide
－all Alzheimer＇s patients，relative to all ill patients
－measures of a sample characteristic are called statistics，e．g．，
－mean grade in class
－highest grade in class
－lowest grade in class
－we will use a statistic to infer properties of the corresponding population
－variables
－dependent
－independent
－measurement scales
－important issues for interpreting data
－important for applying statistical approaches

NEXT TIME

－working with data
－displaying data
－summarizing data
Why the space shuttle Challenger blew up．

PSY 201：Statistics in Psychology

Lecture 03 Plots
Why the space shuttle blew up．

Greg Francis
Purdue University
Fall 2023

DATA
GRAPHS

GOAL：
－organize data in a way that helps us understand it
－often take advantage of visual interpretations
－particularly important for very large sets of data

PLOTTING

－you make a graph to convey information
－place the dependent variable on the y－axis and the independent variable on the x－axis

－avoid everything else that might get in the way！

－plot one variable against another

SPACE SHUTTLE

－January 28， 1986
－O－ring leaked
－the Challenger exploded 59 seconds after liftoff

- January 28, 1986
- O-ring leaked
- the Challenger exploded 59 seconds after liftoff

E. छ のQल

THE DATA

- previous launches showed damage to the O-rings increased as temperature got colder

THE MISTAKES

- when trying to convince NASA scientists to cancel the liftoff engineers:
- cluttered graphics with irrelevant information (motor type, date of launch,...)

THE LESSON

- when trying to convince someone of something, you must present it properly
- avoid fancy graphics and 3D perspectives
- keep it simple
- present the right information
- we will go over some basics of graphing...

THE MISTAKES

- when trying to convince NASA scientists to cancel the liftoff engineers:
- failed to point out that all good launches were in warm temperatures
- failed to point out that the forecasted temperature $\left(29^{\circ}\right)$ was much colder than for any other launch (good or bad)

Temperature (F)
Fall 2023

GRAPH

- using a small data set of four student's grades

GRAPH

- using a small data set of four student's grades

- what measurement scale is the student variable?
- what measurement scale is the score variable?

GRAPH TYPE

- type of data often determines what type of graph to draw
- previous graph plotted ratio (or interval) data against nominal data
- consider the following data

Make of Automobile	Repair Rate (per 1000 sold)
A	4.2
B	6.8
C	3.3
D	0.4
E	1.2

- the graph should not suggest continuity of automobile make

WHICH IS BETTER?

- it sometimes helps to connect the points
- How well did the third student do?
- changing the axis' scale makes the information look different, even though it isn't
- what matters is whether the graph conveys the intended information!

E

SCATTERGRAMS

- sometimes you want to look at co-occurrences of data

Student	Academic Ability Score	Hours of Mathematics
1	54	18
2	29	3
3	42	14
4	60	23
5	33	15
6	28	7
7	56	22
8	48	18
\ldots	\ldots	\ldots

GRAPHS

- Very useful for giving an overview of many types of data sets
- Useful for identifying trends in the data and relationships between variables
- Limited in that they depend on the viewer's interpretive abilities and sometimes graphs breakdown for really big or really small data sets
- We prefer more quantitative approaches

FREQUENCY

- for large data sets we cannot present all the scores
- we often look at the number or frequency of scores within certain limits
- we look at how scores are spread out across different values
- this reduces the number of presented scores and improves understanding

CLASS INTERVAL

Terminology

－width：exact upper limit－exact lower limit
－midpoint：value halfway between upper limit and lower limit
－exact limits：exact boundaries of interval
－matter when we start to work with frequency distributions！
－score limits：highest and lowest possible scores that fall in the interval

FREQUENCIES

－ADVANTAGES
－easier to see distribution of scores
－easier to interpret data
－DISADVANTAGES
－loss of information
－individual scores are missing
－midpoint score is often best guess
－often use frequency information to supplement other information （depends on your needs）

FREQUENCIES

－compare a set of scores
$95,22,45,45,12,79,83,46,89,96,75,33,86,57,69,94,83,75$ ， 77，88，92，85，31， 69
－to frequencies

Class Interval	f
$10-19$	1
$20-29$	1
$30-39$	2
$40-49$	3
$50-59$	1
$60-69$	2
$70-79$	4
$80-89$	6
$90-99$	4

HISTOGRAMS

frequency versus score class interval

CUMULATIVE FREQUENCY DISTRIBUTION

Note：the point on the polygon has it＇s x－coordinate at the upper limit of the corresponding class interval
－frequency distribution tells us how many scores in each class interval
－cumulative frequency distribution tells us how many scores in all class intervals below a specific score

Midpoint	f	cf
67	6	180
62	15	174
57	37	159
52	30	122
47	42	92
42	22	50
37	18	28
32	7	10
27	2	3
22	1	1

PERCENTAGES

OGIVE

- plot cumulative frequency percentage against upper score class interval
- gives percentile points (next time)

DISTRIBUTIONS

SYMMETRIC

FREQUENCY DISTRIBUTIONS

- useful to compare shapes
- any shape is possible
- some shapes are particularly important
- uniform distribution
- skewed distribution (long tail)
- symmetric distribution
- normal distribution
- kurtosis (peakedness)

DISTRIBUTIONS

- with large data sets you have to group data together to make it manageable
- how you do it can sometimes have a profound effect on what people conclude
- consider revenue from a company: grouped by quarterly revenue

DISTRIBUTIONS

- now look at the data when grouped by fiscal or calendar year

- with computers people can now sift through huge amounts of data and present only those graphs that support what they want you to think
- a suspicious person might presume that the graphs you do see are the best possible for advancing the presenter's view
- the only way out of this is to either trust the presenter, or have access to the data and and knowledge to understand it

HONESTY

- so how you define class intervals can determine how you (or someone else) will interpret the data
- statistics don't lie (they are just numbers)
- but you could (and some people do) select certain statistics to make people believe one thing versus another
- the only thing you can do about this effect is to be aware that it exists
- you need to be aware of the limitations of the data and be on guard against things that might influence you
- graphing
- frequencies
- distributions
- remember: the goal is to correctly present information

PSY 201: Statistics in Psychology

Lecture 04
Describing distributions

- percentiles
- percentile ranks

How to score the SAT.
How to score the SAT.

Greg Francis

Purdue University
Fall 2023

DISTRIBUTIONS

- As we saw last time, a well-drawn graph conveys a lot of useful information...
- but a poorly drawn graph can mislead and confuse.
- We would like a quantitative method of describing distributions
- may not entirely avoid misinformation, but at least the limitations will be identifiable

FREQUENCY DISTRIBUTIONS

- A data set of exam scores can be described in many ways
- frequency versus score class interval

CUMULATIVE

- A data set of exam scores can be described in many ways
- cumulative distributions

DISTRIBUTION USES

- summarize data
- indicate most frequent data values
- indicate amount of variation across data values
- allows us to interpret a single score in the context of other scores
- we will explore quantitative methods to describe distributions

TABLE FORMAT

- A data set of exam scores can be described in many ways
- frequency table

Exact Limits	Midpoint	f	cf	$\%$	$\mathrm{c} \%$
$64.5-69.5$	67	6	180	3.33	100
$59.5-64.5$	62	15	174	8.33	96.67
$54.5-59.5$	57	37	159	20.56	88.34
$49.5-54.5$	52	30	122	16.67	67.78
$44.5-49.5$	47	42	92	23.33	51.11
$39.5-44.5$	42	22	50	12.22	27.78
$34.5-39.5$	37	18	28	10.00	15.56
$29.5-34.5$	32	7	10	3.89	5.56
$24.5-29.5$	27	2	3	1.11	1.67
$19.5-24.5$	22	1	1	0.56	0.56

PERCENTILE

- point in a distribution at (or below) which a given percentage of scores is found
- written as

$P_{\text {percentage }}$

- 28th percentile is written as P_{28}
- 99th percentile is written as P_{99}
- ...

PERCENTILE

- what are the data values for the lowest 60% of the population?
- several steps
(1) Find out how many data values make up 60% of the population.
(2) Find the lowest class interval in the cumulative frequency distribution that includes at least that many data values.
(3) Estimate how far into the class interval you must go to reach exactly the percentile.
- works for any percentage!

CALCULATIONS

- find P_{60} using the above data set of scores
(1) number of scores making up 60% of student scores is

$$
(180)(0.60)=108
$$

In general, calculate

$$
(n)(p)
$$

where n is the size of the population (number of scores) and p is the percentage in decimal form

CALCULATIONS

(2) lowest class interval in the cf including 108 scores is with midpoint 52

Exact Limits	Midpoint	f	cf	\%	$\mathrm{c} \%$
$64.5-69.5$	67	6	180	3.33	100
$59.5-64.5$	62	15	174	8.33	96.67
$54.5-59.5$	57	37	159	20.56	88.34
$\mathbf{4 9 . 5 - 5 4 . 5}$	$\mathbf{5 2}$	$\mathbf{3 0}$	$\mathbf{1 2 2}$	$\mathbf{1 6 . 6 7}$	$\mathbf{6 7 . 7 8}$
$44.5-49.5$	47	42	92	23.33	51.11
$39.5-44.5$	42	22	50	12.22	27.78
$34.5-39.5$	37	18	28	10.00	15.56
$29.5-34.5$	32	7	10	3.89	5.56
$24.5-29.5$	27	2	3	1.11	1.67
$19.5-24.5$	22	1	1	0.56	0.56

CALCULATIONS

- so we know that the percentile is somewhere between 49.5 and 54.5. We want a more precise estimate
- we need to know
- width of class interval (5)
- frequency of scores in the class interval containing the percentile point (30)
- exact lower limit of class interval containing the percentile point (49.5)
- cf of scores below the class interval containing the percentile point (92)
- remaining number of scores in class interval containing the percentile point $(108-92=16)$

CALCULATIONS

－estimate of percentile point
－go into the interval the remaining（unaccounted for）percentage

PERCENTILE RANK

－given a particular data value，what percentage of data values are smaller？
－e．g．given a score on a test，what percentage of scores were lower？
－sort of the reverse of percentile
－for a data value of 39 ，we write the percentile rank as

$$
P R_{39}
$$

－（Used on achievement tests！）

CALCULATIONS

$$
P_{X}=\|+\left(\frac{n p-c f}{f_{i}}\right)(w)
$$

－$I I=$ exact lower limit of the interval containing the percentile point
－$n=$ total number of scores
－$p=X / 100$ ，proportion corresponding to percentile（decimal form）
－$c f=$ cumulative frequency of scores below the interval containing the percentile point
－$f_{i}=$ frequency of scores in the interval containing the percentile point
－$w=$ width of class interval

OGIVE

－plot cumulative frequency percentage against score class interval （gives percentile rank）

CALCULATIONS

$$
P R_{X}=\left\{\frac{c f+\left(f_{i}\right)(X-I I) / w}{n}\right\}(100)
$$

- $X=$ score for which percentile rank is to be determined
- cf $=$ cumulative frequency of scores below the interval containing the score X
- II = exact lower limit of the interval containing X
- $w=$ width of class interval containing X
- $f_{i}=$ frequency of scores in the interval containing X
- $n=$ total number of scores

LIMITATIONS

- percentiles help describe a data value relative to its frequency distribution
- but they have some drawbacks
- percentiles use an ordinal scale
- equal differences in percentiles do not indicate equal differences in raw scores!
- class intervals with higher frequency cover a broader range of percentiles (steeper part of ogive)

Exact Limits	Midpoint	f	cf	$\%$	$\mathrm{c} \%$
$64.5-69.5$	67	6	180	3.33	100
$59.5-64.5$	62	15	174	8.33	96.67
$54.5-59.5$	57	37	159	20.56	88.34
$49.5-54.5$	52	30	122	16.67	67.78
$44.5-49.5$	47	42	92	23.33	51.11
$39.5-44.5$	42	22	50	12.22	27.78
$34.5-39.5$	$\mathbf{3 7}$	$\mathbf{1 8}$	$\mathbf{2 8}$	$\mathbf{1 0 . 0 0}$	$\mathbf{1 5 . 5 6}$
$29.5-34.5$	32	7	10	3.89	5.56
$24.5-29.5$	27	2	3	1.11	1.67
$19.5-24.5$	22	1	1	0.56	0.56

CALCULATIONS

$$
\begin{gathered}
P R_{X}=\left\{\frac{c f+\left(f_{i}\right)(X-I I) / w}{n}\right\}(100) \\
P R_{39}=\left\{\frac{10+(18)(39-34.5) / 5}{180}\right\}(100 \\
P R_{39}=14.556
\end{gathered}
$$

LIMITATIONS

- percentiles exaggerate differences in scores when lots of people have similar scores
- underestimate actual differences when lots of people have very different scores
- differences in percentiles should not be compared across different distributions!!!
- only provide information on relative ranking of scores: ordinal scale!
- cannot be meaningfully averaged, summed, multiplied,...
- fixing these problems requires additional terms for describing distributions (central tendency)

CONCLUSIONS

- percentiles
- percentile ranks

NEXT TIME

- central tendency

- mode
- median
- mean

Does a company deserve a tax break?

DESCRIPTION

PSY 201: Statistics in Psychology
Lecture 06
Variability
How to make IQ scores look good.

Greg Francis
Purdue University
Fall 2023

- central tendency gives an indication of where most, many, or average, scores are
- also want some idea of how much variability exists in a distribution of scores
- range
- mean deviation
- variance
- standard deviation
- Highest score - lowest score

Name	Sex	Score
Greg	Male	95
lan	Male	89
Aimeé	Female	94
Jim	Male	92

- $95-89=6$
- range is very sensitive to "extreme" scores

Name	Sex	Score
Greg	Male	95
Ian	Male	89
Aimeé	Female	94
Jim	Male	92
Bob	Male	32

- 95-32 = 63
- one score makes a big difference!

MEAN DEVIATION

- we can decrease sensitivity to extreme scores by considering deviations from a measure of central tendency
- a deviation score is

$$
x_{i}=X_{i}-\bar{X}
$$

- we define the mean deviation as:

$$
\mathrm{MD}=\frac{\Sigma\left|X_{i}-\bar{X}\right|}{n}=\frac{\Sigma\left|x_{i}\right|}{n}
$$

- where $\left|x_{i}\right|$ means: "absolute value of x_{i} "
- why do we take the absolute value instead of just summing deviations?
- mean deviation turns out to be mathematically messy
- squaring also removes minus signs!
- sum of squares

$$
\mathrm{SS}=\Sigma\left(X_{i}-\bar{X}\right)^{2}=\Sigma\left(x_{i}\right)^{2}
$$

- variance is the average sum of squares
- calculation depends on whether scores are from a population or a sample

VARIANCE

POPULATION

SAMPLE

- a population includes all members of a specified group
- variance is defined as:

$$
\sigma^{2}=\frac{S S}{N}=\frac{\Sigma\left(X_{i}-\mu\right)^{2}}{N}=\frac{\Sigma\left(x_{i}\right)^{2}}{N}
$$

- where
- μ is the mean of the population
- N is the number of scores in the population

SAMPLE VARIANCE

- deviation formula:

$$
s^{2}=\frac{\Sigma\left(x_{i}\right)^{2}}{n-1}
$$

- alternative (but equivalent) calculation is the raw score formula

$$
s^{2}=\frac{S S}{n-1}=\frac{\Sigma\left(X_{i}\right)^{2}-\left[\left(\Sigma X_{i}\right)^{2} / n\right]}{n-1}
$$

- use whichever formula is simpler!
EXAMPLE

Name	Sex	Score
Greg	Male	95
lan	Male	89
Aimeé	Female	94
Jim	Male	92

- a sample includes a subset of scores from a population
- variance is defined as:

$$
s^{2}=\frac{S S}{n-1}=\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{n-1}=\frac{\Sigma\left(x_{i}\right)^{2}}{n-1}
$$

- where
- \bar{X} is the mean of the sample
- n is the number of scores in the sample
- why the differences? Don't worry for now. Just know the calculations.
- since we have the raw scores, we use the raw score formula (we assume a sample)

$$
\begin{gathered}
s^{2}=\frac{S S}{n-1}=\frac{\Sigma\left(X_{i}\right)^{2}-\left[\left(\Sigma X_{i}\right)^{2} / n\right]}{n-1} \\
\Sigma X_{i}^{2}=(95)^{2}+(89)^{2}+(94)^{2}+(92)^{2}=34246 \\
\left(\Sigma X_{i}\right)^{2} / n=(95+89+94+92)^{2} / 4=\frac{(370)^{2}}{4}=\frac{136900}{4}=34225
\end{gathered}
$$

- So,

$$
s^{2}=\frac{34246-34225}{3}=\frac{21}{3}=7
$$

SUM OF SQUARES

- earlier we calculated the squared deviation from the mean

$$
\begin{gathered}
\sum x_{i}^{2}=\sum\left(X_{i}-\bar{X}\right)^{2} \\
=(95-92.5)^{2}+(89-92.5)^{2}+(94-92.5)^{2}+(92-92.5)^{2} \\
=(2.5)^{2}+(-3.5)^{2}+(1.5)^{2}+(-0.5)^{2}=0 \\
=6.25+12.25+2.25+0.25=21.0
\end{gathered}
$$

- we can use that to calculate variance with the deviation score formula:

$$
s^{2}=\frac{\Sigma x_{i}^{2}}{n-1}=\frac{21}{3}=7
$$

- Same as before!
- Note! variance cannot be negative

STANDARD DEVIATION

- deviation score formula:

$$
s=\sqrt{s^{2}}=\sqrt{\frac{S S}{(n-1)}}=\sqrt{\frac{\Sigma\left(x_{i}\right)^{2}}{(n-1)}}
$$

- raw score formula:

$$
s=\sqrt{s^{2}}=\sqrt{\frac{S S}{(n-1)}}=\sqrt{\frac{\Sigma\left(X_{i}\right)^{2}-\left[\left(\Sigma X_{i}\right)^{2} / n\right]}{n-1}}
$$

STANDARD DEVIATION

- variance is in squared units of measurement
- distance: squared meters
- weight: squared kilograms
- temperature: squared degrees
- ...
- standard deviation is in the same units as the scores!
- square root of variance

EXAMPLE

Name	Sex	Score
Greg	Male	95
lan	Male	89
Aimeé	Female	94
Jim	Male	92

- since we have the raw scores, we use the raw score formula to calculate variance

$$
s^{2}=\frac{S S}{n-1}=\frac{\Sigma\left(X_{i}\right)^{2}-\left[\left(\Sigma X_{i}\right)^{2} / n\right]}{n-1}
$$

- we calculated earlier that the variance equals:

$$
s^{2}=\frac{34246-34225}{3}=\frac{21}{3}=7
$$

- and then the standard deviation equals:

$$
s=\sqrt{s^{2}}=\sqrt{7} \approx 2.646
$$

WHY BOTHER?

- the value of the standard deviation gives us an idea of how spread out scores are
- larger standard deviations indicate that scores are more spread out

STANDARD SCORE

- also called z-score

$$
\begin{aligned}
\text { Standard score } & =\frac{\text { raw score }- \text { mean }}{\text { standard deviation }} \\
z & =\frac{X-\bar{X}}{s}
\end{aligned}
$$

- indicates the number of standard deviations a raw score is above or below the mean
- we will use standard deviation to let us estimate how different a score is relative to the central tendency of the distribution
- we can then compare (in a certain sense) across distributions!

EXAMPLE

- if

$$
\bar{x}=26
$$

- and

$$
s=4
$$

- and you have (among others) the scores $X_{1}=16, X_{2}=32, X_{3}=28$
- then

$$
\begin{aligned}
& z_{1}=\frac{X_{1}-\bar{X}}{s}=\frac{16-26}{4}=-2.5 \\
& z_{2}=\frac{X_{2}-\bar{X}}{s}=\frac{32-26}{4}=1.5 \\
& z_{3}=\frac{X_{3}-\bar{X}}{s}=\frac{28-26}{4}=0.5
\end{aligned}
$$

- when a raw score is above the mean, its z-score is positive
- when a raw score is below the mean, its z-score is negative
- when a raw score equals the mean, its z-score is zero
- absolute size of the z-score indicates how far from the mean a raw score is
- z-scores work in units of standard deviation
- new numbers for same information!
- just like converting units for other familiar measures
- length: feet into meters, miles into kilometers
- weight: pounds into kilograms
- temperature: fahrenheit into celsius
- data: raw score units into standard deviation units
- trick!: standard deviation units depend on your particular set of data!

PROPERTIES

- z-scores are data
- we can find distributions, means, and standard deviations
- special properties of z-score distributions
- The shape of the distribution of standard scores is identical to that of the original distribution of raw scores.
- The mean of a distribution of z-scores will always equal 0 .
- The variance (and standard deviation) of a distribution of z-scores always equals 1 .

EXAMPLE

- A simple data set to play with
- when a raw score is above th mean, its z-score is positive
- when a raw score is below the mean, its z-score is negative
- when a raw score equals the mean, its z-score is zero
- absolute size of the z-score indicates how far from the mean a raw score is

USES

- compare distributions of raw scores and z-scores
- shape is the same

- suppose we want to compare the scores of a student in several classes
- we know the student's score, the mean score, the standard deviation, and the student's z-score

Subject	X	\bar{X}	s	z
Psychology	68	65	6	0.50
Mathematics	77	77	9	0.00
History	83	89	8	-0.75

- comparison of raw scores suggests that student did best in history, mathematics, then psychology
- comparison of z-scores suggests that student did best in psychology, mathematics, then history (relative to other students)

TRANSFORMED SCORES

- sometimes z-scores are unattractive
- zero mean
- negative values
- need to convert same information into a new distribution with a new mean and standard deviation

$$
X^{\prime}=\left(s^{\prime}\right)(z)+\bar{X}^{\prime}
$$

- where
- $X^{\prime}=$ new or transformed score for a particular individual
- $s^{\prime}=$ desired standard deviation of the distribution
- $z=$ standard score for a particular individual
- $\bar{X}^{\prime}=$ desired mean of the distribution
- GOAL: make data understandable; IQ scores, personality tests,...
- NOTE: you can change the mean and standard deviation all you want, but it does not change the information in the data
- shape remains the same!
- conversion back to z-scores would produce the same z-scores!
- a percentile maps to the corresponding transformed score

TRANSFORMED SCORES

- if we transform the scores from our earlier data set using

$$
X^{\prime}=20 X+50
$$

- we get

- variance
- standard deviation
- standard scores

NEXT TIME

- a very important distribution
- normal distribution

Describing everyone's height.

PSY 201: Statistics in Psychology
Lecture 07
Normal distribution Describing everyone's height.
Greg Francis
Purdue University

Fall 2023

- frequency of scores plotted against score

- frequency \rightarrow likelihood, probability

NORMAL DISTRIBUTION

$$
Y=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(X-\mu)^{2} / 2 \sigma^{2}}
$$

- Y height of the curve for any given value of X in the distribution of scores
- π mathematical value of the ratio of the circumference of a circle to its diameter. A constant (3.14159.....)
- e base of the system of natural logarithms. A constant (2.7183...)
- μ mean of the distribution of scores
- σ standard deviation of a distribution of scores
sometimes written as

$$
Y=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-(X-\mu)^{2} / 2 \sigma^{2}\right]
$$

PARAMETERS

- a family of distributions
- member of the family is designated by the mean μ and standard deviation σ
- changing μ shifts the curve to the left or the right
- shape remains the same

- describe (summarize) distributions
- shape: unimodal, bimodal, skew,...
- central tendency: mode, median, mean
- variation: range, variance, standard deviation
- summarizing forces you to lose information
- some theoretical distributions are special!
- a few numbers completely specify the distribution

PARAMETERS

- changing σ changes the spread of the curve
- compare normal distributions for $\sigma=1$ and $\sigma=2$, both with $\mu=3$

PROPERTIES

- all normal distributions have the following in common
- Unimodal, symmetrical, bell shaped, maximum height at the mean.
- A normal distribution is continuous. X must be a continuous variable and there is a corresponding value of Y for each X value.
- A normal distribution asymptotically approaches the X axis.
- changing μ and σ together produces predictable results

STANDARD NORMAL

- remember z-scores:
- 0 mean
- 1 standard deviation
- if the z-scores are normally distributed

$$
Y=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(X-\mu)^{2} / 2 \sigma^{2}}
$$

- becomes

$$
Y=\frac{1}{1 \sqrt{2 \pi}} e^{-(z-0)^{2} / 2\left(1^{2}\right)}
$$

- or

$$
Y=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

STANDARD NORMAL

- looks like

SIGNIFICANCE

- It turns out that lots of frequency distributions can be described as a normal distribution
- intelligence scores
- weight
- reaction times
- judgment of distance
- rating of personality
- ...
- almost any situation where small independent components come together
- It turns out that lots of frequency distributions can be described as a normal distribution
- for example, an estimate of height
Greg Francis (Purdue University) PSY 201: Statistics in Psychology Fall 2023 11/19

SIGNIFICANCE

- when the distribution is a normal distribution, we can describe the distribution by just specifying
- Mean: \bar{X}
- Standard deviation: s
- Noting it is a normal distribution
- that's all we need!
- That's part of our goal: describe distributions

STANDARD NORMAL

－assume you have a standard normal distribution（don＇t worry about where it came from）

$$
Y=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

－if your distribution is normal，you can create a standard normal by converting to z－scores

STANDARD NORMAL

－total area under the curve always equals 1.0
－area under the curve from the mean（0）to one tail equals 0.5

－same as all other distributions
－identify key aspects of the data
－percentiles
－percentile rank
－proportion of scores within a range
－．．．
－make it easier to interpret data significance！

STANDARD NORMAL

－area under the curve one standard deviation away from the mean is approximately 0.3413
－area under the curve two standard deviations away from the mean is approximately 0.4772
－area under the curve three standard deviations away from the mean is approximately 0.4987

CONCLUSIONS

NEXT TIME

- normal distribution
- equations
- properties
- standard normal equations
- area under the curve
- proportions
- percentiles
- percentile ranks

Business decisions.

NORMAL DISTRIBUTIONS

PSY 201: Statistics in Psychology
Lecture 08
Normal distribution
Business decisions.

Greg Francis
Purdue University
Fall 2023

- when the distribution is a normal distribution, we can describe the distribution by just specifying
- Mean: \bar{X}
- Standard deviation: s
- Noting it is a normal distribution
- that's all we need!
- That's part of our goal: describe distributions
- same as all other distributions
- identify key aspects of the data
- percentiles
- percentile rank
- proportion of scores within a range
- ...
- make it easier to interpret data significance!

AREA UNDER CURVE

Normal Distribution Calculator

- solving for the area requires calculus and numerical analysis (ack!)
- fortunately, we can also use computers
- our text provides

AREA UNDER CURVE

- proportional to the frequency of scores within the designated endpoints
- suppose you want to know the proportion of scores between the mean and another score (z-score)

CALCULATOR

- how would you find the area between $z=-0.3$ and $z=2.4$?

CALCULATOR

- how would you find the area below $z=1.4$?

PROPORTIONS

- We find that 77.45% of the scores lie between one standard deviation below the mean and 1.5 standard deviations above the mean
- so how many scores are in that range?
- multiply the total number of scores (250) with the percent in the range (decimal form)

$$
(0.7745) \times(250)=193.625 \approx 194
$$

PROPORTIONS

- suppose you have 250 scores from a test that are normally distributed
- you want to know how many scores are between 1.0 standard deviation below the mean and 1.5 standard deviations above the mean
- two steps
(1) calculate the area under the standard normal between $z=-1.0$ and $z=1.5$.
(2) convert the area under the curve to number of scores

PROPORTIONS

- suppose you have 250 scores from a test that are normally distributed
- you want to know how many scores are below 0.5 standard deviations above the mean, and how many scores are beyond 2.5 standard deviations above the mean.
- two steps
(1) calculate the area under the standard normal below $z=0.5$ and above $z=2.5$.
(2) convert the area under the curve to number of scores

PROPORTIONS

- We find that 69.77% of the scores lie below 0.5 standard deviation above the mean or beyond 2.5 standard deviations above the mean
- so how many scores are in that range?
- multiply the total number of scores (250) with the percent in the range (decimal form)

$$
(0.6997) \times(250)=174.925 \approx 175
$$

PERCENTILES

- The Inverse Normal Calculator gives the z-score that corresponds to different areas
- Click "Below" to make it fill in from the left side

PERCENTILES

- X th percentile is score for which X percent of scores fall at or below
- 50th percentile is the median (and the mean!)

EXAMPLE

- to find P_{75} for a standard normal curve, enter Area $=0.75$
- and find that the corresponding z-score is 0.674

- what about P_{25} ?

EXAMPLE

- Symmetry!

$$
P_{25}=-P_{75}
$$

- in general for $X<50$,

$$
P_{X}=-P_{100-x}
$$

- Indirect way:
(1) Calculate percentile of z-score distribution.
(2) Convert z-score back to a raw score.
- from z-score we can calculate

$$
X=(s)(z)+\bar{X}
$$

- the online-app shows that for a standard normal, $P_{70}=0.5244$, so

$$
X=(20)(0.5244)+85=95.49
$$

- Or, just change the mean and the standard deviation of the normal distribution in the on-line app

CONVERSION

- suppose you have a normal distribution with a mean of 85 and a standard deviation of 20
- how would you find the 70 th percentile?

BUSINESS DECISION

- suppose you are part of a company manufacturing what you think will be the "next big thing" in men's pants

BUSINESS DECISION

- You want to produce pants that will fit the center of the distribution of men's waist sizes
- To maximize profit, there is no need to make pants for men with really small or really large waists because there are so few such people
- According to the National Health and Nutrition Examination Survey the distribution of waist circumference is approximately normal with (in centimeters)

$$
\mu=101.5
$$

- (around 40 inches)

$$
\sigma=27.6
$$

- What size waists do you manufacture to cover the middle 80% of the distribution of waist sizes?

BUSINESS DECISION

- What size waists do you manufacture to cover the middle 80% of the distribution of waist sizes?

Specify Parameters:
Mean 101.5
SD ${ }^{27.62675}$
Area 8

- Above
\bigcirc Below
- Between 66.09 and 136.91
Outside
- (Obviously, there are more things to consider: costs, how many sizes, customer preferences,...)

BUSINESS DECISION

- You plan to set up a canoe business on the Wabash River. You want to purchase canoes that will be able to carry 90% of 3 -person families. Canoes that carry more weight cost more, so you want canoes that hold the lower 90% of people (mother, father, child)
- Statistics (pounds)
- Adult women

$$
\mu=168.5, \sigma=67.7
$$

- Adult men:

$$
\mu=195.7, \sigma=68.0
$$

- Children (18 year old):

$$
\mu=179.4, \sigma=89.7
$$

BUSINESS DECISION

- For a family we add the means and the variances
- Family:

$$
\begin{gathered}
\mu=168.5+195.7+179.4=543.6 \\
\sigma^{2}=(67.7)^{2}+(68.0)^{2}+(89.7)^{2}=17261
\end{gathered}
$$

$$
\sigma=131.4
$$

BUSINESS DECISION

- To be able to hold 90% of families, you need a canoe that holds weight of the 90th percentile

CONCLUSIONS

- normal distribution
- area under curve
- proportions
- percentiles

NEXT TIME

- percentile ranks
- examples

A statistical approach to assigning grades.

PERCENTILE RANKS

PSY 201: Statistics in Psychology
 Lecture 09
 Normal distribution
 A statistical approach to assigning grades.
 Greg Francis
 Purdue University

Fall 2023

PERCENTILE RANKS

- suppose you have a normal distribution with a mean of 85 and a standard deviation of 20
- how would you find the percentile rank of raw score 65?

Normal Distribution Calculator

Specify Parameters:

$$
\text { Mean } 0 \quad \text { SD ; }
$$

$$
\begin{aligned}
& \text { - Above } 1.96 \\
& \text { Below } \\
& \hline 1.96
\end{aligned}
$$

$$
\begin{aligned}
& \text { Between }-1.96 \\
& \text { and } 1.96 \\
& \hline \text { untsid }
\end{aligned}
$$

$$
\text { Shaded area: } 0.025
$$

Recalculate

- area under the curve below a particular score (same as we did before)

EXAMPLE

- A set of 200 scores is normally distributed with a mean of 60 and a standard deviation of 12 .
- How many scores lie between the values of 48 and 80 ? 65 and 75? 34 and 52?
- Normal Distribution Calculator
- proportion of scores is area under the curve

Specify Parameters:
Mean \square SD i.

- Above	1.96
	Below
1.96	

Between -1.96 and 1.96
Outside and
Shaded area: 0.025
Shaded area: o..as
Recalculute
Shaded area:
Recataulute

Normal Distribution Calculator

Specify Parameters:
Mean 0 SD 1

- Above 1.96

Between -1.96 and 1.96
Outside -.- .96 and 1.96

Shaded area: 0.025
Reacalulate

Normal Distribution Calculator

Specity Parameters:
Mean 0 SD ;

- Above 1.96

Between -1.96 and 1.96
Outside -1.96 and 1.96
Shaded area: 0.025
Recalculate

\square

- the area is the proportion of scores
- to get the number of scores, we multiply the proportion times the total number of scores
- number of scores between 48 and 80 is $200 \times 0.7938=158.76$
- We do the same thing for the other cases...

EXAMPLE

- To get the number of scores between 65 and 75 we calculate
- Total area $=0.2316$
- Number of scores between 65 and $75=$ $200 \times 0.2316=46.32$

EXAMPLE

Normal Distribution Calculator

$$
\begin{aligned}
& \text { Specify Parameters: } \\
& \text { Mean } 0 \text { SD } 1 \\
& \text { o Above } 1.96 \\
& \text { OBelow } 1.96 \\
& \text { O Between } \frac{1.96}{} \text { and } 1.96
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Shaded area: } 0.025 \\
\text { Reacaucuate: }
\end{array} \\
\hline
\end{array}
$$

EXAMPLE

many scores exceed the values of 80,60 , and 40 ?

- area under the normal curve greater than 80 is 0.0475
- So the number of scores greater than 80 is: $200 \times 0.0475=9.5$
- Same approach for the other scores

Normal Distribution Calculator

Specify Parameters:

$$
\text { Mean } 0 \text { SD }
$$

- Above 1.96

Below 1.96
Between -1.96 and 1.96

Shaded area: 0.025
Shaded area
Reoalculate

- area under the normal curve greater than 60 is 0.5
- so the number of scores greater than 60 is $200 \times 0.5=100$.
- area under the normal curve greater than 40 is 0.9525
- so the number of scores greater than 40 is $200 \times 0.9525=190.5$
- How many scores are less than the values of 35,50 and 75 ?
- area below 35 is 0.0188
- Number of scores less than 35 is $200 \times 0.0188=3.76$

Normal Distribution Calculator

- Find $P_{35}, P_{80}, P R_{55}, P R_{70}$.
- For percentiles, we use the Inverse Normal Calculator

Inverse Normal Distribution Calculator

Mean 0
SD 1
Area 0.025
$\bigcirc{ }^{\circ} \mathrm{A}$ Above 1.96

- Between
Outside
- Outside

Enter the mean and standard deviation of the

ASSIGNING GRADES

- For Percentile Ranks, use the Normal Distribution Calculator
- Find area under the normal for scores less than these scores
area less than $55 \rightarrow 0.3372$
area less than $70 \rightarrow 0.7967$
- in percentiles these mean:
- $P R_{55}=33.72$
- $P R_{70}=79.67$

Normal Distribution Calculator

- A statistics instructor tells the class that grading will be based on the normal distribution. He plans to give 10 percent A's, 20 percent B's, 40 percent C's, 20 percent D's, and 10 percent F's.
- If the final examination scores have a mean of 75 and a standard deviation of 9.6 , what is the range of scores for each grade?

A range

- To find the A range, we need to find what score corresponds to the top 10%.
- Use the Inverse Normal

Calculator:

$$
P_{90}=87.30
$$

- So the A range is any score greater than 87.30

Inverse Normal Distribution Calculator

Specify Parameters:
Mean
SD
Area

0.025

- Above 1.96
- Below

Between
Outside
Recaluluate
Enter the mean and standard deviation of the

B range

- B range must include 20% of scores.
- Must be less than 87.30.
- We need to find P_{70} !! (lower limit)

$$
P_{70}=80.03
$$

- So the B range is between 80.03 and 87.30

Inverse Normal Distribution Calculator

Mean 0
SD ${ }^{1}$
$\stackrel{-}{\circ}$ Above 1.96
Between
Outside

Enter the mean and standard deviation of the

C range

- C range must include 40% of scores.
- Must be less than 80.03.
- We need to find P_{30} !! (lower limit)
- Use the Inverse Normal

Calculator:

$$
P_{30}=69.97
$$

- So the C range is between 69.97 and 80.03
nverse Normal Distribution Calculator

Specify Parameters:
Mean 0
SD 1
Area 0.025

- Above 1.96

Below
Between
Outside
Recalculute
Enter the mean and standard deviation of the

D range

- D range must include 20% of scores.
- Must be less than 69.97.
- We need to find P_{10} !! (lower limit)
- Use the Inverse Normal Calculator:

$$
P_{10}=62.70
$$

- So the D range is between 62.70 and 69.97
- of course the F range is anything below 62.70

Inverse Normal Distribution Calculator

Specify Parameters:
Mean 0
SD 1
Area 0.025

- Above 1.96

Below
Outside
Recalculate
Enter the mean and standard deviation of the

CONCLUSIONS

- the on-line calculator makes these problems fairly easy to compute
- it still takes effort to think about what you actually need
- looking at graphs helps a lot!
- correlation
- identifying relationships between data sets

How changes in one variable correspond to changes in another variable.

NEXT TIME

PSY 201: Statistics in Psychology
Lecture 10
Correlation
How changes in one variable correspond to change in another variable.

Greg Francis
Purdue University

Fall 2023

- two variables may be related
- SAT scores, GPA
- hours in therapy, self-esteem
- grade on homeworks, grade on exams
number of risk factors, probability of getting AIDS
- height, points in basketball
- ...
- how do we show the relationship?
- scattergrams

SCATTERGRAMS

- plot value of one variable against the value of the other variable

RELATIONSHIPS

- Identifying these types of relationships is one of the key issues in statistical analysis
- Consider a 1999 study that reported a relationship between the use of nightlights in a child's room and the tendency of the child to need glasses

- My daughter slept with a nightlight. Was I a bad father?

COMPLICATIONS

－Clearly there is a relationship between using a nightlight and needing glasses
－However，it＇s not clear what the nature of the relationship involves
－It could be that the extra light somehow influences the child＇s eyes and causes the need for glasses
－Or it could be that needing glasses will somehow co－occur with the use of a nightlight（e．g．，children who need glasses will want a night light，or their parents will want a nightlight）
－Finding a relationship is necessary for establishing causation，but it is not enough

SPURIOUS CORRELATION

－Since so many variables get measured，it is easy to identify spurious correlations
－Sometimes there is no explanation for the relationship：

SPURIOUS CORRELATION

－Since so many variables get measured，it is easy to identify spurious correlations
－Sometimes there is an explanation for the relationship：

－Computer science doctorates
\rightarrow Arcade revenue
－（increased use of technology）

POSITIVE CORRELATION

－First，we need to understand how to quantify the existence of a relationship．
－Increases in the value of one variable tend to occur with increases in the value of the other variable
－SAT scores and exam scores

NEGATIVE CORRELATION

- Increases in the value of one variable tend to occur with decreases in the value of the other variable
- temperature and number of people with frostbite

NO CORRELATION

- no correlation
- balance of larger and smaller values

PERFECT CORRELATIONS

- perfect positive correlation

- perfect negative correlation

CORRELATION COEFFICIENT

- quantitative measure of correlation
- bounded between

$$
-1.0 \&+1.0
$$

- correlation coefficient of -1.0 indicates perfect negative correlation
- correlation coefficient of +1.0 indicates perfect positive correlation
- correlation coefficient of 0.0 indicates no correlation
- values in between give ordinal measures of relationship
- Pearson product-moment correlation coefficient
- one correlation coefficient for quantitative data (the most important one)

$$
r=\frac{\text { degree to which } X \text { and } Y \text { vary together }}{\text { degree to which } X \text { and } Y \text { vary separately }}
$$

- several formulas
- z-scores
- Deviation scores
- Raw scores
- Covariance
- all give the same result!
- what does this calculation do?
- suppose you have two distributions that have a positive correlation
- then a large value of X will be above \bar{X} and have a positive z_{X} score
- and a corresponding Y will be above \bar{Y} and have a positive z_{y} score
- Thus the cross-product

$$
z_{x} z_{y}
$$

- will be positive
z SCORES
- Two steps
- Convert raw scores into z scores
- Find the mean of cross-products

$$
r_{x y}=\frac{\sum z_{x} z_{y}}{n-1}
$$

- also a small value of X will be below \bar{X} and have a negative z_{X} score
- and the corresponding Y will be below \bar{Y} and have a negative z_{y} score
- Thus

$$
z_{x} z_{y}
$$

- will again be positive
- to find the average, sum all the products (positive numbers) we divide by $n-1$

$$
r_{x y}=\frac{\sum z_{x} z_{y}}{n-1}
$$

- still a positive number!
- exactly the opposite is true for negatively correlated distributions
- then a large value of X will be above \bar{X} and have a positive z_{X} score
- and a corresponding Y will be below \bar{Y} and have a negative z_{y} score - Thus

$$
z_{x} z_{y}
$$

- will be negative

DEVIATION FORMULA

- it is awkward to convert to z scores
- we can get the same number with deviation scores

$$
\begin{aligned}
& x=X-\bar{X} \\
& y=Y-\bar{Y}
\end{aligned}
$$

- deviation score formula

$$
r_{x y}=\frac{\Sigma x y}{\sqrt{\sum x^{2} \Sigma y^{2}}}
$$

PEARSON r

- while a small value of X will be below \bar{X} and have a negative z_{X} score
- and the corresponding Y will be above \bar{Y} and have a positive z_{y} score
- Thus

$$
z_{x} z_{y}
$$

- will again be negative
- to find the average, sum all the products (negative numbers) we divide by $n-1$

$$
r_{x y}=\frac{\sum z_{x} z_{y}}{n-1}
$$

- still a negative number!
- it is awkward to calculate deviation scores
- raw score formula

$$
r_{x y}=\frac{n \Sigma X Y-\Sigma X \Sigma Y}{\sqrt{\left[n \Sigma X^{2}-(\Sigma X)^{2}\right]\left[n \Sigma Y^{2}-(\Sigma Y)^{2}\right]}}
$$

$$
\text { covariance }=s_{x y}=\frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{n-1}
$$

- average cross-product of deviation scores (similar to variance)
- Pearson r turns out to be:

$$
r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}
$$

- where s_{x} and s_{y} are the standard deviations of their respective distributions

EXAMPLE

X	Y
595	68
520	55
715	65
405	42
680	64
490	45
565	56
580	59
615	56
435	42
440	38
515	50
380	37
510	42
565	53

EXAMPLE

- deviation score formula

$$
r_{x y}=\frac{\Sigma x y}{\sqrt{\sum x^{2} \Sigma y^{2}}}=\frac{12332.00}{\sqrt{(130460.0)(1429.72)}}=0.903
$$

X	Y	x	y	$x y$
595	68	61.0	16.53	1008.33
520	55	-14.0	3.53	-49.42
715	65	181.0	13.53	244.93
405	42	-129.0	-9.47	1221.63
680	64	146.0	12.53	1829.38
490	45	-44.0	-6.47	284.68
565	56	31.0	4.53	140.43
560	59	46.0	7.53	346.38
615	56	81.0	4.53	366.93
435	42	-99.0	-9.47	937.53
440	38	-94.0	-13.47	126.18
515	50	-19.0	-1.47	27.93
380	37	-154.0	-14.47	228.38
510	42	-24.0	-9.47	227.28
565	53	31.0	1.53	47.43
$\sum X=8010$	$\sum Y=772$	$\sum x=0.0$	$\sum y=0.0$	$\sum x y=12332.00$

- $\Sigma x^{2}=130460.0$ and $\Sigma y^{2}=1429.72$

EXAMPLE

- raw score formula

$$
\begin{gathered}
r_{x y}=\frac{n \Sigma X Y-\Sigma X \Sigma Y}{\sqrt{\left[n \Sigma X^{2}-(\Sigma X)^{2}\right]\left[n \Sigma Y^{2}-(\Sigma Y)^{2}\right]}} \\
\frac{(15)(424580)-(8010)(772)}{\sqrt{\left[(15)(4407800)-(8010)^{2}\right]\left[(15)(41162)-(772)^{2}\right]}}=0.903
\end{gathered}
$$

\times	Y	XY
595	68	40460
520 715	$\begin{array}{r}55 \\ 65 \\ \hline\end{array}$	28600
405	${ }_{42}^{65}$	46470 17010
680 490	64 45 45	43520 22050
${ }_{565}$	45 56	${ }_{31640}^{2250}$
558	59	34220 3420
615 435	56	$\begin{array}{r}34440 \\ \hline 18270 \\ \hline\end{array}$
435 440	42 38 38	18270 16720
515	50	25750
380	37	14060
510 565	42 53	${ }_{29945}^{21420}$
EX=8010	772	424580

- $\Sigma X^{2}=4407800$ and $\Sigma Y^{2}=41162$

CORRELATION

- r measures correlation between two variables
- not just any two variables
- The two variables must be paired observations.
- Variables must be quantitative (interval or ratio scale).

EXAMPLE

- covariance formula

$$
r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}=\frac{880.86}{(96.53)(10.11)}=0.903
$$

- where,

$$
\begin{gathered}
s_{x y}=\frac{\Sigma x y}{n-1}=\frac{12332}{14}=880.86 \\
s_{x}=\sqrt{\frac{\Sigma x^{2}}{n-1}}=\sqrt{\frac{130460}{14}}=96.53 \\
s_{y}=\sqrt{\frac{\Sigma y^{2}}{n-1}}=\sqrt{\frac{1429.72}{14}}=10.11
\end{gathered}
$$

- correlation
- scattergrams
- Pearson r
- formulas

PSY 201: Statistics in Psychology

Lecture 11
Correlation
Is there a relationship between IQ and problem solving ability?

Greg Francis

Purdue University
Fall 2023

CORRELATION

- suppose you get $r \approx 0$.
- Does that mean there is no correlation between the data sets?
- many aspects of the data may affect the value of r
- Linearity of data.

Homogeneity of group.

- Size of group.
- Restricted range

LINEARITY

- r is partly an index of how well a straight line fits the data set
- Here, $r=0.903$

- when data points don't fall along a single line (nonlinear data)
- Here, $r=0.05$

NONLINEARITY

- It can get complicated
- $r=-0.20$

- $r=-0.91$

NONLINEARITY

- there are lots of types of nonlinearities
- curvilinear relationship
- Here, $r=0.131$

BOTTOM LINE

- Pearson r is an index of a linear relationship between variables
- if another (nonlinear) relationship exists, r might not notice it
- Pearson r measures only simple relationships between variables
- if r is small, you might want to plot a scattergram to look at the data to notice if other relationships exist

HOMOGENEITY

you get $r \approx 0$ ，and you cannot detect any type of nonlinea relationship
－Does this mean there is no correlation between the variables？
－Not necessarily，it may be that the data does not have enough variation in it
－Correlation measures how variable X changes with variable Y
－if one doesn＇t change much，there won＇t be a strong correlation

HOMOGENEITY

－intutively

$$
r=\frac{\text { degree to which } X \text { and } Y \text { vary together }}{\text { degree to which } X \text { and } Y \text { vary separately }}
$$

－if one of those variables（or both）is not varying much at all，r will be small
－you need enough variability across both sets of scores to adequately measure correlation
measure correlation

HOMOGENEITY

－consider the covariance formula

$$
r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}
$$

－where，covariance is

$$
s_{x y}=\frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{n-1}
$$

－if there is little change in Y from $\bar{Y}, s_{x y}$ is going to be small because $+/-$ variations in $X-\bar{X}$ will be weighted by small values of $Y-\bar{Y}$
－similarly，s_{y} is going to be small，so we divide a small number by a small number

HOMOGENEITY

－the effects of homogeneity can be subtle
－relationship between SAT scores and Final exam grade
－$r=0.92$

HOMOGENEITY

- suppose we looked at the relationship among only the best students
- (those with final exam scores above 44)
- $r=0.62$

SIGNIFICANCE

- if you have $r \approx 0$, it may be because there is not enough variation in your data set
- e.g.
- IQ and problem solving is probably unrelated among a group of geniuses
- IQ and problem solving is probably unrelated among a group of idiots
- IQ and problem solving is probably strongly related among a mix of geniuses, idiots, and normals

HOMOGENEITY

- or worst students
- (those with final exam scores below 40)
- $r=0.62$

- correlation drops!

SIZE OF GROUP

- suppose you have only two data points
- you can always draw a straight line connecting them
- which implies perfect correlation
- $r=-1.0$

- (correlation doesn't tell us anything useful!)

SIZE OF GROUP

- if you have enough data points for correlation to be meaningful (>2), and you have enough variation in the data, then
- size of group is not important in determining the value of r
- we will see later that it is important in determining the accuracy of the relationship (hypothesis testing)

RESTRICTED RANGE

- if you sample from the general population (not just college students) you would get a larger range of IQs
- you may find a much weaker correlation, e.g. $r=0.12$

RESTRICTED RANGE

- if you sample data from a limited range you may not be able to trust the correlation values in general
- e.g., suppose you want to study relationships between IQ and creativity
- if you sample college students you will probably get IQ's between 110 and 140
- perhaps you find a strong correlation, e.g. $r=0.78$

RESTRICTED RANGE

- of course, it could be that you fail to find a large r over a restricted range, but a larger range finds a large r (this is slightly different from the issue of homogeneity)
- in general
- a correlation measure applies only to the range of values used to compute it
- you cannot extend the correlation value to other ranges

INTERPRETATION OF r

- if we calculate a value of r
- How do we know what it means?
- How do we compare r values for different data sets?
- Rule of thumb

$\|r\|$	Interpretation
0.9 to 1.0	Very high correlation
0.7 to 0.9	High correlation
0.5 to 0.7	Moderate correlation
0.3 to 0.5	Low positive correlation
0.0 to 0.3	Little if any correlation

VARIANCE

- we can interpret r in terms of variance
- correlation coefficient indicates relationships between variables
- also indicates proportion of individual differences that can be associated with individual differences of another variable
- values of r are ordinal measures of correlation
- higher r values indicate larger correlation
- equal spacings of r values may not indicate equal spacings of correlation
- thus, $r=0.90$ is not twice as correlated as $r=0.45$
- the difference in correlation between $r=0.90$ and $r=0.75$ is not the same as the difference in correlation between $r=0.60$ and $r=0.45$.

VARIANCE

- the idea is embedded in mathematical models
- assume you want to predict the final exam score when you know the SAT score
- line predicts score (could go in reverse too)

VARIATION

- deviation of a final exam score from the mean value can be due to deviation accounted for by SAT scores, or due to something else

VARIATION

- it turns out that

$$
r^{2}=\frac{s_{a}^{2}}{s_{y}^{2}}
$$

- where:
- $s_{y}^{2}=$ the total variance in y
- $s_{a}^{2}=$ the variance in Y associated with variance in X
- thus, r^{2} is the proportion of variance in Y accounted for with variance in X
- we are skipping the mathematical details (thank you!)
- called the coefficient of determination

NEXT TIME

- probability
- rules
- significance

Why casinos make money.

DESCRIPTIVE STATISTICS

PSY 201: Statistics in Psychology
Lecture 12
Probability
Why casinos make money.

Greg Francis

Purdue University

Fall 2023

- most of what we have discussed so far is called descriptive statistics
- distributions
- graphs
- central tendency
- variation
- correlation
- describe sets of data

INFERENTIAL STATISTICS

- given a set of data from a sample
- we want to infer something about the entire population
- mean
- standard deviation
- correlation
- ...
- never with certainty, but with probability

PROBABILITY

- number between 0 and 1
- probability of event A is written as

$$
P(A)
$$

- if

$$
P(A)=1.0
$$

- it indicates with certainty that event A will happen
- if

$$
P(A)=0
$$

- it indicates with certainty that event A will not happen

PROBABILITY LAWS

－there are specific rules to probability
－we want to know the probability of many events，pairs of events， contingent events，．．．
－how to calculate probabilities depends upon
－Complements
－Mutually exclusive compound events
－Nonmutually exclusive events
－Statistically independent joint events
－Statistically dependent joint events

SINGLE EVENTS

－precise definition requires high－level mathematics
－intuitive definition is that probability of a single event is the ratio of the number of possible outcomes that include the event to the total number of possible outcomes

$$
\begin{aligned}
& P(\text { a die coming up } 3)=\frac{\text { Number of outcomes that include } 3}{\text { Total number of outcomes }} \\
& \qquad \begin{array}{c}
P(\text { a die coming up } 3)=\frac{1}{6} \approx 0.167 \\
124456
\end{array}
\end{aligned}
$$

COMPLEMENTS

－suppose we know the probability $P(A)$ ，where A is some event
－then if \bar{A} represents＂not A＂（called the complement of A ）

$$
P(\bar{A})=1.0-P(A)
$$

－when $A=$ turning up a 3 on a die， \bar{A} means turning up anything other than a 3
－since $P(A)=0.167$
－$P(\bar{A})=1.0-0.167=0.833$
－sometimes we know the probability of two events A and B ，and we want to know the probability of event A or B
－e．g．
－these are mutually exclusive events
－one or the other

$$
P(\text { turning up a } 3 \text { or a } 4 \text { on a die })
$$

one or the other

NONMUTUALLY EXCLUSIVE

－for mutually exclusive compound events，calculating the probability of the compound is easy
－consider probability of rolling numbers on a die

$$
P(\text { a } 3 \text { or a } 4)=P(3)+P(4)
$$

$P($ turning up a 3 or a 4 on a die $)=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}$

$$
123456
$$

－in general，if A and B are mutually exclusive

$$
P(A \text { or } B)=P(A)+P(B)
$$

NONMUTUALLY EXCLUSIVE

－subtract out common probability

$$
P(\text { number } \leq 3 \text { or odd })=
$$

$$
\begin{gathered}
P(\leq 3)+P(\text { odd })-P(\leq 3 \text { and odd })= \\
\frac{1}{2}+\frac{1}{2}-\frac{2}{6}=\frac{3}{6}+\frac{3}{6}-\frac{2}{6}=\frac{4}{6}=\frac{2}{3}
\end{gathered}
$$

－in general

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

－when the events are mutually exclusive，$P(A$ and $B)=0$ ，and we get the rule for mutually exclusive events

JOINT EVENTS

－if we know $P(A)$ and $P(B)$ ，what is $P(A$ and $B)$ ？
－both events must occur（simultaneously or successively）
－e．g．

$$
P(3 \text { on a die and HEAD on a coin flip) }
$$

－sometimes events are not mutually exclusive
－e．g．
－$A=$ turning up a number ≤ 3 on a die：$P(A)=\frac{1}{2}$
－$B=$ turning up an odd number on a die：$P(B)=\frac{1}{2}$
－what is $P(A$ or $B)$ ？

123456

－cannot just add probabilities because numbers common to A and B get counted twice！

- events are independent if the occurrence of one event does not affect the probability of the other event occurring
- e.g., rolling a 3 on a die has no effect on whether or not a coin will come up HEADS

$$
\begin{aligned}
& P(3 \text { on die })=\frac{1}{6} \\
& P(\text { HEADS })=\frac{1}{2}
\end{aligned}
$$

- so

$$
\begin{gathered}
P(3 \text { and HEADS })=P(3) \times P(\text { HEADS }) \\
P(3 \text { and HEADS })=\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}
\end{gathered}
$$

MULTIPLICATION

- why multiply probabilities of joint events?
- probability is ratio of the number of outcomes including an event to the total number of possible outcomes
- for the joint event "3 on a die and HEADS", the possible outcomes are

$$
\begin{aligned}
& 1 \mathrm{H}, 2 \mathrm{H}, 3 \mathrm{H}, 4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H} \\
& 1 \mathrm{~T}, 2 \mathrm{~T}, 3 \mathrm{~T}, 4 \mathrm{~T}, 5 \mathrm{~T}, 6 \mathrm{~T}
\end{aligned}
$$

- count up the possibilities!

SAMPLING WITHOUT REPLACEMENT

- many times the probability of an event does depend on other events
- e.g., suppose we have ten numbered balls in a jar
- the probability of drawing ball 3 is $\frac{1}{10}$
- suppose we draw ball 2; leaving nine balls in the jar
- the probability of drawing ball 3 is now $\frac{1}{9}$

CONDITIONAL PROBABILITIES

- we can describe the effect of other events by identifying conditional probabilities
- e.g.
P (drawing ball 3 given that ball 2 was already drawn)
P (ball 3|ball 2)
- in general the probability of event A, given event B is written as

$$
P(A \mid B)
$$

- no direct way of calculating from $P(A)$ or $P(B)$

JOINT PROBABILITY

- if we know $P(A)$ and $P(B \mid A)$ then we can calculate the joint probability

$$
P(A \text { and } B)=P(A) P(B \mid A)
$$

- if we know $P(B)$ and $P(A \mid B)$ then we can calculate the joint probability

$$
P(A \text { and } B)=P(B) P(A \mid B)
$$

- same number!
- if events are independent, this rule is the same as before because

$$
P(A \mid B)=P(A)
$$

NONINDEPENDENT EVENTS

- when

$$
P(A)=P(A \mid B)
$$

- we say events A and B are independent
- otherwise the events are nonindependent (dependent)

EXAMPLE

- what is the probability of drawing ball 2 and then ball 3 from a jar with ten numbered balls?
- we know that
$P($ drawing ball 2 from the full jar $)=\frac{1}{10}$
$P($ drawing ball $3 \mid$ ball 2 is drawn from the full jar $)=\frac{1}{9}$
- so

$$
P(\text { drawing ball } 3 \text { and drawing ball } 2)=
$$

P (drawing ball 2 from the full jar) \times
$P($ drawing ball $3 \mid$ ball 2 is drawn from the full jar) $=$

$$
\frac{1}{10} \times \frac{1}{9}=\frac{1}{90}
$$

- we assume coin flips, rolling dice, samples from jars are random events
- unpredictable for a specific instance
- predictable on average over lots of samples (likelihood of happening)
- randomness is sometimes a good thing
- probability
- mutually exclusive events
- compound events
- independence

NEXT TIME

- review for exam
- SECTION EXAM 1
- fun problems with probability

PSY 201: Statistics in Psychology
Lecture 13
Probability
Coincidences are rarely interesting.

Greg Francis

Purdue University
Fall 2023

PROBABILITY

EVERYDAY EVENTS
number between 0 and 1
probability of event A is written as

$$
P(A)
$$

if

$$
P(A)=1.0
$$

it indicates with certainty that event A will happen if

$$
P(A)=0
$$

it indicates with certainty that event A will not happen

JULIUS CAESAR

- Some 2000 years ago (or so) Julius Caesar is said to have gasped "You too, Brutus? Then I die." as his friend stabbed him to death
- What are the chances that you just inhaled a molecule that came out of his mouth?
- Surprisingly good! Almost 0.99.
- Assumes
- Caesar's dying breath contained about $A=2.2 \times 10^{22}$ molecules
- Those molecules are free and distributed around the globe evenly.
- Your inward breath contained about $B=2.2 \times 10^{22}$ molecules
- The atmosphere contains about $N=10^{44}$ molecules
- people often have misconceptions about the way probabilities interact
- things that seem rare may not actually be
- interesting to analyze the probability of events that seem unusual
- Julius Ceasar
- Hitting streaks
- Predictive dreams
- Shared birthdays
- Con games with cards

JULIUS CAESAR

- If there are N molecules and Caesar exhaled A of them, then the probability that any given molecule you inhale is from Caesar is

$$
P(\mathrm{~m} \text { from } \mathrm{C})=\frac{A}{N}=2.2 \times 10^{-23}
$$

- which is very small!
- So the probability that any given molecule you inhale is not from Caesar is the complement:

$$
P(\mathrm{~m} \text { not from } \mathrm{C})=1-\frac{A}{N}=1-2.2 \times 10^{-23}
$$

JULIUS CAESAR

HITTING STREAKS

- So the probability of inhaling B molecules that are not from Caesar is

$$
P(\text { breath not from C })=\left(1-\frac{A}{N}\right)^{B} \approx 0.01
$$

- So the probability of your breath containing at least one molecule from Caesar is approximately $1-0.01=0.99$!
- Pete Rose set a National League record with 44 consecutive games with a safe hit
- this is impressive, but is it rare?
- Rose batted around 0.300 (had a safe hit 30% of the time)
- so, assuming 4 at bats per game, the probability of not getting a hit during a game is

$$
P(\text { no hit })=(1-0.3)^{4}=0.24
$$

- So the probability of getting at least one hit is $1-0.24=0.76$.

HITTING STREAKS

- Still, the probability of getting hits in any given sequence of 44 games is

$$
P(44 \text { streak })=(0.76)^{44}=0.000005699
$$

- and the probability of not getting a streak is

$$
P(\text { not } 44 \text { streak })=1-(0.76)^{44}=0.999994301
$$

HITTING STREAKS

- But there are 162 games in a season, so there are 118 sets of 44 consecutive games
- Thus, the probability of not getting a streak of hits in at least 44 consecutive games out of a 162 game season is:

$$
P(\text { no streak })=(0.999994)^{118}=0.999327
$$

- so the probability of a 44-game streak is

$$
P(\text { streak })=1-(0.999994)^{118}=0.000672
$$

- (includes the possibility of streaks of more than 44 games)
- Still very rare!

HITTING STREAKS

－But how many players have been in the Major Leagues at any given time？（say 30 that bat like Rose）
－the probability that every player will not get a streak of at least 44 games in a given year is

$$
P(\text { no streak })=(0.9993)^{30}=0.9800
$$

－So probability that at least one player gets such a streak is

$$
1.0-0.980027651=0.019972349
$$

－still small！

PREDICTIVE DREAMS

－ever dream something and had it come true？
－Many people take this occurence as evidence of extrasensory perception and＂other worlds＂．But it＇s actually not that uncommon from a probabilitistic point of view
－suppose that the probability that a night＇s dream matches some later event in life is 1 in 10000

$$
P(\text { predictive dream })=0.0001
$$

－Then the chance that a dream is non－predictive is

$$
P(\text { non predictive dream })=1-0.0001=0.9999
$$

－assume that dream predictiveness is independent

HITTING STREAKS

－And how many years has baseball been played？（say 100）
－the probability that every year everyone will not get a streak of at least 44 games in a given year is

$$
P(\text { no streak })=(0.9800)^{100}=0.1329
$$

－So probability that at least one player on some year gets such a streak is

$$
1.0-0.132994269=0.867005731
$$

－which is pretty good odds！
－Thus，we can expect that Rose＇s streak will be broken eventually （unless pitchers become much better）

PREDICTIVE DREAMS

－With 365 days a year，the probability that all 365 nights have non－predictive dreams is

$$
P(\text { non predictive })=(0.9999)^{365}=0.96415
$$

－so the probability that an individual has a predictive dream during a year is

$$
P(\text { predictive })=1.0-0.96415=0.03585
$$

－or about 3.6% of people have a predictive dream during a year
－considering that there are billions of people，this corresponds to millions of dreams（and lots of people talk about them！）

PREDICTIVE DREAMS

- but what about for an individual?
- over a span of 20 years, the probability that all your dreams are non predictive is

$$
P(\text { non predictive })=(0.96415)^{20}=0.481
$$

- which means that the probability of having a predictive dream is

$$
P(\text { predictive })=1.0-0.481=0.519
$$

- better than 50% chance!
- It might be unusual to not have had a predictive dream!

SHARED BIRTHDAYS

- what is the probability that a group of 23 people have no shared birthdays?
- how many ways to have birthdates from 23 people?

$$
(366)^{23}=9.1214727 \times 10^{58}
$$

- How many ways to have 23 birthdates with no shared birthdays?

$$
366 \times 365 \times 364 \times \ldots \times 344=4.5030611 \times 10^{58}
$$

SHARED BIRTHDAYS

- ever been amazed to find that a group of people has two members with a shared birthday?
- you shouldn't be; it is not much of a coincidence
- Consider that a year has 366 days (counting February 29)
- to be certain that a group of people has a common birthday you would need a group of size 367
- what if we were willing to be just 50% certain of a shared birthday? How big would the group need to be?
- the surprising answer is 23

SHARED BIRTHDAYS

- probability of no shared birthdays is the number of ways to have no shared birthdays divided by the number of ways to have birthdays

$$
P(\text { no shared })=\frac{4.5030 \times 10^{58}}{9.1214 \times 10^{58}}=0.4936
$$

- so the probability of at least one shared birthday is

$$
P(\text { shared })=1.0-0.4936=0.5063
$$

- just about 50\%
- Test it!
- Here is a game that is played on the streets of some cities
- A man has 3 cards
- Card 1: Black on both sides.
- Card 2: Red on both sides.
- Card 3: Black on one side and red on the other.
- He drops the cards in a hat, turns around and asks you to pick a card Then he asks you to show him only one side of the card.
- Suppose you show him a red side. Now the man knows that the card cannot be Card 1 (black on both sides) and the card in your hand must be either Card 2 or Card 3.
- He offers you a bet of even money that he can guess the card. Is this a fair bet?

CON GAMES

- Given that you have shown him one red side he knows that what you have shown is either:
- first side of card 2
- second side of card 2
red side of card 3
- Thus, of the possibilities, two are consistent with his guess of Card 2, and only one is consistent with your option of Card 3. He wins two-thirds of the time.
- It might seem that this is fair. After all, the card in your hand is either Card 2 or Card 3. He has a 50% chance of guessing correctly, right?
- No.

CONCLUSIONS

- probability
- apply to lots of situations
- coincidences are not as interesting as you might expect
- Decision making from noisy data
- Signal detection

Is that your phone?

PSY 201: Statistics in Psychology

Lecture 14
Signal detection
Is that your phone?

Greg Francis

Purdue University

Fall 2023

- Suppose you have to determine if there is a line of dots in a random field of dots (on-line example)
- Your ability to do the task depends on
- The number of dots in the field
- The position of the dots in the field
- How much effort you put in the task
- Lots of tasks are essentially the same kind of situation
- what corresponds to noise in each situation?
- Did you skip lunch at least one time last month?
- Is that your phone ringing?
- Does zinc shorten a cold?
- Are men taller than women?
- We suppose that there is some number that "measures" what you are interested in
- Did you skip lunch at least one time last month?: strength of familiarity or memorability
Is that your phone ringing?: similarity to your ringtone?
- Does zinc shorten a cold?: duration of a cold
- Are men taller than women?: height

DISTRIBUTIONS

- There may be many sources of noise
- Variation in the environment
- Variation in your perceptual systems
- Variation in your memory
- and many more!

DISTRIBUTIONS

- Assume a normal distribution
- Mean is "noiseless" measurement
- Variation from mean is due to noise being added

DISTRIBUTIONS

- Suppose your measurement is drawn randomly from the distribution, then the area under the curve indicates the probability of getting a measurement over the specified region

－There are two distributions that you have to consider．One when the signal／effect is present and one when it is not：
－Did you skip lunch at least one time last month？：strength of familiarity when you did skip lunch and strength of familiarity when you did not skip lunch
－Is that your phone ringing？：similarity to your ringtone when it is your phone and similarity to your ringtone when it is not your phone
－Does zinc shorten a cold？：duration of a cold when zinc works and duration of a cold when zinc does not work
－Are men taller than women？：height difference when men are taller and height difference when men are the same height as women

ZINC AND COLDS

－Based on published research，if you do not take zinc tablets，the duration（in days）of a cold follows a normal distribution with

$$
\mu=7.12, \sigma=1.1
$$

－If you take zinc tablets，the duration（in days）of a cold follows a normal distribution with

$$
\mu=4.00, \sigma=1.1
$$

ZINC AND COLDS

－Together，some overlap of the distributions

－Suppose you sample a person who has a cold and find the duration． Using just that information，you want to decide whether the person took zinc or not．
－Easy cases：
－$X=10$
－$X=15$
－$X=2$
－$X=0.5$

ZINC AND COLDS

- Together, some overlap of the distributions

- Suppose you sample a person who has a cold and find the duration Using just that information, you want to decide whether the person took zinc or not.
- Hard cases:
- $X=6$
- $X=5$
d-prime
- We take the mean of the "no zinc" distribution (noise alone) and compute distance to the mean of the "with zinc" distribution
- in standardized units

$$
d^{\prime}=\frac{\mu_{N Z}-\mu_{W Z}}{\sigma}=\frac{7.12-4.00}{1.1}=2.02
$$

ZINC AND COLDS

- Together, some overlap of the distributions

- We want to quantify how different the distributions are
- How much they do not overlap
- Signal-to-noise ratio
- (it's a z-score!)

VITAMIN C AND COLDS

- Together, lots of overlap of the distributions

- We take the mean of the "no treatment" distribution (noise alone) and compute distance to the mean of the "with vitamin C" distribution
- in standardized units

$$
d^{\prime}=\frac{\mu_{N T}-\mu_{W C}}{\sigma}=\frac{7.12-6.55}{1.1}=0.52
$$

- It is often easy to identify which distribution a measurement came from if d^{\prime} is big
- big difference in means, relative to the standard deviation
- It is often hard to identify which distribution a measurement came from if d^{\prime} is small
- small difference in means, relative to the standard deviation

DISCRIMINATION

- is your measurement a random sample from a distribution where your dog was bitten by a snake?
- or
- is your measurement a random sample from a distribution where your dog was not bitten by a snake?
- the separation of the distributions indicates whether the discrimination will be easy or hard
- actually describing the means and standard deviations of these distributions might be challenging!
- the same issues apply for lots of situations
- Suppose you are walking your dog who yelps in pain and runs to you
- You think he might have been bitten by a snake
- you have a "measure" of snake-bite evidence (bump on nose, paws are shaking,...)
- you want to determine whether your dog was bitten by a snake
- For lots of situations, the d^{\prime} value is quite small
- Within psychology, some rules of thumb are:
- $d^{\prime}=0.2$ is considered a "small" effect
- $d^{\prime}=0.5$ is considered a "medium" effect
- $d^{\prime}=0.8$ is considered a "large" effect

BAD NEWS

- For lots of situations, the d^{\prime} value is quite small
- The difference of heights between men and women is roughly

$$
d^{\prime}=\frac{176-162}{15.4}=0.90
$$

- signal-to-noise ratio
- standard score
- d^{\prime}
- Separation of distributions
- discrimination

NEXT TIME

- Making decisions
- Criterion

Making decisions.

PSY 201: Statistics in Psychology
Lecture 15
Signal detection
Making decisions.

Greg Francis

Purdue University
Fall 2023

- Distributions of cold duration when taking zinc or not taking zinc overlap somewhat

$$
d^{\prime}=\frac{\mu_{N Z}-\mu_{W Z}}{\sigma}=\frac{7.12-4.00}{1.1}=2.02
$$

ZINC AND COLDS

- Distributions of cold duration when taking zinc or not taking zinc overlap somewhat

- We want to define a decision criterion to separate short and long cold durations
- Suppose we set our criterion to be

$$
C=4
$$

DECISION OUTCOMES

	State of nature	
Decision made	Tablets contain zinc	Tablets do not contain zinc
Decide tablets contain zinc	Hit	False Alarm
Decide tablets do not contain zinc	Miss	Correct Rejection

- When making decisions in noise there is always the risk of making errors!
- We want to think about the probability of different outcomes
- Suppose you sample a person who has a cold and find the duration.
- Using just that information, you want to decide whether the person took zinc or not (e.g., you advised your friend to take the zinc, but he bought a generic version on the Internet and you suspect the tablets do not actually contain zinc).
- If the cold duration is long, you conclude the tablets do not contain zinc
- If the cold duration is short, you conclude the tablets do contain zinc
- Suppose the tablets really do contain zinc, then when you make a decision you either make:
- Hit (if you decide the tablets contain zinc)
- Miss (if you decide the tablets do not contain zinc)
- We know $\mu_{W Z}=4$ and $\sigma=1.1$. If we use a criterion of $C=4$, how often do we make hits and misses?
- (Use the on-line calculator)
- Hit: P (decide contains zinc - tablet contains zinc) $=0.5$
- Miss: $\mathrm{P}($ decide no zinc - tablet contains zinc $)=0.5$
- Suppose the tablets really do not contain zinc, then when you make a decision you either make:
- False Alarm (if you decide the tablets contain zinc)
- Correct Rejection (if you decide the tablets do not contain zinc)
- We know $\mu_{N Z}=7.12$ and $\sigma=1.1$. If we use a criterion of $C=4$, how often do we make false alarms and correct rejections?
- (Use the on-line calculator)
- False Alarm: $\mathrm{P}($ decide contains zinc - tablet has no zinc $)=0.0023$
- Correct Rejection: $\mathrm{P}($ decide no zinc - tablet has no zinc $)=0.9977$
$P($ correct decision $)=P($ decide contains zinc \mid tablet contains zinc $) \times P($ tablet contains zinc $)+$

$$
P(\text { decide no zinc } \mid \text { tablet has no zinc) } \times P(\text { tablet has no zinc })
$$

- If it is equally likely that the tablets contain zinc or do not contain zinc, then the probability that you make a correct decision is:

$$
0.5 \times 0.5+0.9977 \times 0.5=0.74885
$$

DIFFERENT CRITERION

- Suppose the tablets really do contain zinc; we know $\mu_{W Z}=4$ and $\sigma=1.1$. If we use a criterion of $C=5$, how often do we make hits and misses?
- Hit: P (decide contains zinc|tablet contains zinc) $=0.8183$
- Miss: P (decide no zinc|tablet contains zinc) $=0.1817$
- Suppose the tablets really do not contain zinc; we know $\mu_{N Z}=7.12$ and $\sigma=1.1$. If we use a criterion of $C=5$, how often do we make false alarms and correct rejections?
- False Alarm: $\mathrm{P}($ decide contains zinc - tablet has no zinc $)=0.027$
- Correct Rejection: P(decide no zinc - tablet has no zinc) $=0.973$

DECISION OUTCOMES

$P($ correct decision $)=P($ decide contains zinc|tablet contains zinc) $\times P($ tablet contains zinc $)+$
$P($ decide no zinc|tablet has no zinc) $\times P($ tablet has no zinc)

- If it is equally likely that the tablets contain zinc or do not contain zinc, then the probability that you make a correct decision is:

$$
0.8183 \times 0.5+0.973 \times 0.5=0.89565
$$

- Using $C=5$ produces better outcomes (more likely to make the right decision) than using $C=4$.
- What would be the optimal criterion?

OVERLAP

- For vitamin C, the durations overlap quite a bit

- We take the mean of the "no treatment" distribution (noise alone) and compute distance to the mean of the "with vitamin C"
distribution
- in standardized units

$$
d^{\prime}=\frac{\mu_{N T}-\mu_{W C}}{\sigma}=\frac{7.12-6.55}{1.1}=0.52
$$

TRADE OFFS

- Setting the decision criterion always involves trade offs. In our situation of cold durations and zinc in tablets:
- Increasing $C \rightarrow$ more hits, more false alarms
- Deceasing $C \rightarrow$ more misses, more correct rejections
- You generally cannot avoid some errors when making decisions under noisy situations

OVERLAP

- Suppose the tablets really do contain vitamin C; we know $\mu_{W C}=6.55$ and $\sigma=1.1$. If we use a criterion of $C=5$, how often do we make hits and misses?
- Hit: P (decide contains vitamin C|tablet contains vitamin C) $=0.0794$
- Miss: P (decide no vitamin C|tablet contains vitamin C) $=0.9206$
- Suppose the tablets really do not contain vitamin C; we know $\mu_{N T}=7.12$ and $\sigma=1.1$. If we use a criterion of $C=5$, how often do we make false alarms and correct rejections?
- False Alarm: $P($ decide contains vitamin $C \mid$ tablet has no vitamin C$)=$ 0.027
- Correct Rejection: $P($ decide no vitamin $C \mid$ tablet has no vitamin C$)=$ 0.973
$P($ decide contains vitamin $\mathrm{C} \mid$ tablet contains vitamin C$) \times P($ tablet contains vitamin C$)+$ $P($ decide no vitamin $\mathrm{C} \mid$ tablet has no vitamin C$) \times P($ tablet has no vitamin C$)$
- If it is equally likely that the tablets contain vitamin C or do not contain vitamin C , then the probability that you make a correct decision is:

$$
0.0794 \times 0.5+0.973 \times 0.5=0.5262
$$

- Not much better than a random guess!

DECISION OUTCOMES

$P($ correct decision $)=$

$P($ decide contains vitamin $\mathrm{C} \mid$ tablet contains vitamin C$) \times P($ tablet contains vitamin C$)+$

- If it is equally likely that the tablets contain vitamin C or do not contain vitamin C , then the probability that you make a correct decision is:

$$
0.6022 \times 0.5+0.6022 \times 0.5=0.6022
$$

- Not great, but you cannot do better!
- Suppose the tablets really do contain vitamin C; we know $\mu_{W C}=6.55$ and $\sigma=1.1$. If we use a criterion of $C=6.835$ (optimal), how often do we make hits and misses?
- Hit: $P($ decide contains vitamin $\mathrm{C} \mid$ tablet contains vitamin C$)=0.6022$
- Miss: $P($ decide no vitamin $\mathrm{C} \mid$ tablet contains vitamin C$)=0.39778$
- Suppose the tablets really do not contain vitamin C; we know $\mu_{N T}=7.12$ and $\sigma=1.1$. If we use a criterion of $C=6.835$, how often do we make false alarms and correct rejections?
- False Alarm: P (decide contains vitamin $\mathrm{C} \mid$ tablet has no vitamin C$)=$ 0.39778
- Correct Rejection: $P($ decide no vitamin $\mathrm{C} \mid$ tablet has no vitamin C$)=$ 0.6022

$$
P(\text { decide no vitamin } \mathrm{C} \mid \text { tablet has no vitamin } \mathrm{C}) \times P(\text { tablet has no vitamin } \mathrm{C})
$$

PSY 201: Statistics in Psychology
Lecture 16
Underlying distributions
Can you read my mind?

Greg Francis

Purdue University
Fall 2023

DISTRIBUTION

- representation of all possible outcomes
- area under the curve represents relative frequency of events
- completely describes an aspect of a situation relative to a particular variable
- often theoretical curves (but not always)

DICE ROLES

DISTRIBUTION

- we can identify the underlying distribution of the sum of dice variable

Sum	f
1	0
2	1
3	2
4	3
5	4
6	5
7	6
8	5
9	4
10	3
11	2
12	1
13	0

VARIABLE

- a distribution is specific to a variable (x-coordinate)
- suppose instead of the sum of dice roles, we look at the distribution of the absolute value of the difference of dice roles

\mid Difference \mid	f
0	6
1	10
2	8
3	6
4	4
5	2
6	0

DISTRIBUTION

- same type of stuff we did earlier

- frequency of every possible outcome of the variable Sum

DISTRIBUTION

- the underlying distribution is different because we are considering a different variable

－once we have the underlying distribution we can calculate probabilities

$$
P(A)=\frac{\text { Number of outcomes that include } A}{\text { Total number of possible outcomes }}
$$

－you better believe a casino cares about this！
－so does the government
－in practice statisticians generally work with theoretical distributions
－suppose you have a situation where there are only two possible outcomes from an action
－e．g．，flip a coin： H or T
－each flip is independent of the other flips
－how many H＇s do you get if you flip the coin over and over（or flip many identical coins at once）？

BINOMIAL DISTRIBUTION

－suppose you flip the coin twice
－the possible outcomes are

First coin	Second Coin	Number H
H	H	2
H	T	1
T	H	1
T	T	0

－can produce a frequency distribution table

Number H＇s	f
0	1
1	2
2	1

BINOMIAL DISTRIBUTION

- suppose you flip the coin thrice
- the possible outcomes are

First coin	Second Coin	Third Coin	Number H
H	H	H	3
H	T	H	2
T	H	H	2
T	T	H	1
H	H	T	2
H	T	T	1
T	H	T	1
T	T	T	0

BINOMIAL
for three flips, cube the binomial

$$
(H+T)^{3}=H^{3}+3 H^{2} T+3 H T^{2}+T^{3}
$$

- or

$$
(H+T)^{3}=H H H+3 H H T+3 H T T+T T T
$$

- coefficient of each term indicates number of occurrences!
- this approach works in general (combinatorics)

BINOMIAL DISTRIBUTION

- can produce a frequency distribution table

Number H's	f
0	1
1	3
2	3
3	1

BINOMIAL DISTRIBUTION

- in turns out that for m flips of the coin the probability of getting x number of H 's is

$$
P\left(x \text { number of } \mathrm{H}^{\prime} \mathrm{s}\right)=\frac{m!}{x!(m-x)!}(0.5)^{m}
$$

- where x ! $=(x)(x-1)(x-2) \ldots(2)(1)$
is "x-factorial"
(don't worry about it)
- works for probabilities other than 0.5 too (slightly more complicated)
- Your textbook provides an on-line calculator for any probability
- for $m=12$

- looks a lot like a normal distribution
- for $m>20$, the difference is very small

USE

- You need to know the probability of guessing 6 correct identifications out of 6 trials
- binomial distribution gives us exactly what we want to know

- suppose you have a friend who always drinks Sprite, claiming it is better than 7-Up
- you test your friend's ability to distinguish between Sprite and 7-Up
- Your friend sips two glasses of soda, one containing Sprite and the other 7-Up. Your friend must decide which is the Sprite. You do this 6 times. (Glasses are identical, randomized for tasting first,...)
- Your friend identifies the glass containing Sprite every time. Now you need to decide if your friend really knows his stuff or is just lucky.
- the probability of guessing correctly 6 out of 6 times is very small (0.0156)
- most likely your friend can tell Sprite from 7-Up
- we will be using distributions like this a lot!
- compare performance to guessing performance
- performance we get from experimentation
- guessing performance we get through tables and calculations (can be complicated)

MIND READING?

- Suppose I flip a coin and look at the upward side.
- Can people read my mind?
- Suppose we took 10 people and asked them to guess which side I saw.
- Some will guess correctly, just by luck.
- How often must people guess correctly before we decide they can read my mind?

MIND READING?

- Each person guessing has a 1 in 2 chance of being correct. So if each person was guessing, how many would we expect to guess correctly?
- What is the probability for each number of guessing correctly?: its a binomial distribution
- can produce a table of probabilities
- It would be surprising (rare) if people were correct 8,9 , or 10 times out of 10 .

Number correct	p
0	0.0010
1	0.0098
2	0.0439
3	0.1172
4	0.2051
5	0.2461
6	0.2051
7	0.1172
8	0.0439
9	0.0098
10	0.0010

MIND READING?

- Let's see if people can read my mind:
- measure ability to read my mind
- get number correct
- see if it is "rare enough" for us to conclude they can read minds
- By using the on-line Binomial distribution calculator

CONCLUSIONS

- underlying distributions
- binomial distribution
- started hypothesis testing

PSY 201: Statistics in Psychology

Lecture 17

- sampling distribution of the mean
- properties of sampling distributions

Marvel at my predictive powers!
Sampling distribution of the mean
Marvel at my predictive powers!

Greg Francis

Purdue University
Fall 2023

SAMPLING

- suppose we have a population with a mean μ and a standard deviation σ
- suppose we take a sample from the population and calculate a sample mean \bar{X}_{1}
- suppose we take a different sample from the population and calculate a sample mean \bar{X}_{2}
- suppose we take a different sample from the population and calculate a sample mean X_{3}

DISTRIBUTION

- the different \bar{X}_{i} sample means that are calculated will be related to each other because they all come from the same population, which has a population mean of μ
- we can consider a distribution of the sample means
(same idea as distribution of sum of dice roles)

- this distribution involves frequencies of means rather than frequencies of scores
- for most of inferential statistics we do not deal with the frequency distribution of scores
- A sampling distribution is the underlying distribution of values of the statistic under consideration, from all possible samples of a given size.
- currently, the statistic is the sample mean \bar{X}

SAMPLING DISTRIBUTION

- how do we get the sampling distribution?
- e.g., suppose you have a population of 5 people with math scores
- and you take sample sizes of 3
- you must consider every possible group of 3 people from the population
- turns out there are 10 such groups
- NOTE: the number of samples is greater than the size of the population!

CENTRAL LIMIT THEOREM

- fortunately, there are theorems that tell us what the distribution will look like
- as the sample size (n) increases, the sampling distribution of the mean for simple random samples of n cases, taken from a population with a mean equal to μ and a finite variance equal to σ^{2}, approximates a normal distribution
- another theorem based on unbiased estimation tells us that the mean of the sampling distribution is μ

STANDARD ERROR

- theorems on unbiased estimates also give us the sampling distribution variance and standard deviation
- denote the sampling distribution variance as

$$
\sigma_{\bar{X}}^{2}
$$

- it turns out that

$$
\sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n}
$$

- where
- $\sigma^{2}=$ variance in the population
- $n=$ size of sample

STANDARD ERROR

WHY BOTHER?

- of course the standard deviation of the sampling distribution is the square root of the variance

$$
\sigma_{\bar{x}}=\sqrt{\sigma_{\bar{x}}^{2}}
$$

- or

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

- also called the standard error of the mean

WHY BOTHER?

- this is something we can work with!

- calculate percentages, proportions, percentile ranks

PROBABILITY

- we can answer questions like such that
- area under the curve
- suppose you know that for a population, $\mu=455$ and $\sigma=100$ (an example involving SAT scores)
- then we know the following about a sampling distribution involving samples sizes of 144 students
- The distribution is normal.
- The mean of the distribution is 455 .
- The standard error of the mean is $100 / \sqrt{144}=8.33$.
- what is the probability of randomly selecting a sample with a mean \bar{X}

$$
440<\bar{X}<460 ?
$$

- everything is just like before
- area under the curve
- We use the normal distribution calculator with Mean=455 and SD=8.33

SAMPLING DISTRIBUTION

- the sampling distribution has two critical properties
- As sample size (n) increases, the sampling distribution of the mean becomes more like the normal distribution in shape, even when the population distribution is not normal.
- As the sample size (n) increases, the variability of the sampling distribution of the mean decreases (the standard error decreases).

SHAPE

- with large sample sizes, all sampling distributions of the mean look like normal distributions
- means the conclusions we draw from sampling distributions are not dependent on the shape of the population distribution!
- a remarkable result that is due to the central limit theorem

VARIABILITY

- from our calculation of standard error:

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

- we see that increasing n makes for smaller values of $\sigma_{\bar{X}}$
- e.g. for $n=144$ in our previous example $\sigma_{\bar{X}}=8.33$

VARIABILITY

- but if $n=20$,

$$
\sigma_{\bar{x}}=\frac{100}{\sqrt{20}}=22.36
$$

- compare to the 8.33 with $n=144$

VARIABILITY

- increasing the sample size decreases the variability of sample means
- makes sense if you think about it

- we have two ways of finding the sampling distribution of the mean
- gather lots of samples, calculate means and standard deviations (virtually impossible)
- estimate the mean and standard deviation of the population, use central limit theorem (relatively easy)
- the central limit theorem allows us to do inferential statistics, without
it, much of this course would not exist (actually there is one other way to do statistics...)
- I'll sit down and calculate the population mean (μ) and standard deviation (σ)
- you calculate the sample mean (\bar{X}) for the 10 scores you have

$$
\bar{X}=\frac{\Sigma X_{i}}{10}
$$

- let's create a sampling distribution
- two things
- Write down the height of your father (in inches) on the papers going around the room
- Sample the height measure of 10 people close to you.
- OK, I get

$$
\begin{gathered}
\mu=\frac{\Sigma X_{i}}{N}= \\
\sigma=\sqrt{\frac{\Sigma\left(X_{i}\right)^{2}-\left[\left(\Sigma X_{i}\right)^{2} / N\right]}{N}}=
\end{gathered}
$$

- with this information, I can predict the frequency of sample means each of you calculated
- I predict that most of you calculated sample means close to

$$
\bar{X}=\mu=
$$

- moreover, I predict that the distribution of sample means is normal
- lets plot the sample means you calculated

CONCLUSIONS

- sampling distribution of the mean looks like a normal distribution
- methods of calculating mean and standard deviation if μ and σ are known
- samples must be randomly selected

EXAMPLE

- Let's calculate the standard deviation of the sampling distribution of the mean heights as

$$
\sigma_{\bar{X}}=\sqrt{\frac{\Sigma(\bar{X})^{2}-\left[(\Sigma \bar{X})^{2} / N\right]}{N}}=
$$

- I predict that it will be very close to

$$
\frac{\sigma}{\sqrt{10}}=
$$

NEXT TIME

- hypothesis testing
- using the sampling distribution (in what looks to be reverse!)
- null hypothesis

Why I don't use herbal medicines.

SUPPOSE

PSY 201: Statistics in Psychology
Lecture 18
Hypothesis testing of the mean
Why I don't use herbal medicines

Greg Francis

Purdue University
Fall 2023

- we think the mean value of a population of SAT scores is $\mu=455$
- we can take a sample of the population and calculate the sample mean of SAT scores $\bar{X}=535$
- we can make some statement about how rare it is to get a result like $\bar{X}=535$ (what we did last time)
- and if such a result is very rare
- we can make a statement about how unreasonable it is that our original thought is true!

HYPOTHESIS TESTING

- in hypothesis testing we consider how reasonable a hypothesis is, given the data that we have
- if the hypothesis is reasonable (consistent with the data), we assume it could be true
- if the hypothesis is unreasonable (inconsistent with the data), we assume it is false
- deciding on what hypotheses to test is critically important!
- four steps:
(1) State the hypothesis and criterion.
(2) Compute the test statistic.
(3) Compute the p value.
(1) Make a decision.

NULL HYPOTHESIS

－conjecture about one or more population parameters
－e．g．
－$\mu=455$
－$\mu_{1}=\mu_{2}$
－$\sigma=3.5$
－$r=0.76$
－．．．
－in inferential statistics we always test the null hypothesis：H_{0}

NULL HYPOTHESIS

－what＇s wrong with herbal medicines？
－nothing necessarily，but I don＇t know that they are any good（and they may be bad）
－lots of reports that they help people（but how can they be sure）
－need to start by assuming that a medicine does nothing，and prove that the assumption is false！
－anecdotal reports are just about worthless

NULL HYPOTHESIS

－similar to an indirect proof．e．g．
－why this approach？ that something is true $\left(H_{a}\right)$
－H_{0} is the assumption of no relationship，or no difference．e．g．
－H_{0} ：no relationship between variables
－H_{0} ：no difference between treatment groups
－We want the H_{0} to be specific so that we can define a sampling distribution
－the alternative hypothesis，H_{a} is the other possibility．e．g．
－$H_{0}: \mu=455$
－$H_{a}: \mu \neq 455$
－does not say what μ is，but says what it is not！
－often times（almost always）the goal of statistical research is to reject the null hypothesis，so that the only alternative is to accept H_{a}
－show that the angles of a triangle sum to 180° by assuming that they do not and then finding a contradiction
－it is much easier to show that something is false $\left(H_{0}\right)$ than to show
－understanding of relationship between variables or differences between groups often requires many experiments！

STATE THE HYPOTHESIS

- before doing anything else, we need to make certain that we understand the tested hypothesis
- for the SAT example

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu \neq 455
\end{aligned}
$$

- sometimes this is the most difficult step in designing an experiment
- to start, we will worry only about hypotheses about the population mean, μ

SIGNAL DETECTION

- The task is almost the same as deciding whether a measurement came from a noise-alone (null hypothesis) distribution or a signal-and-noise (alternative hypothesis) distribution
- How well you can do is determined by the signal-to-nose ratio $\left(d^{\prime}\right)$, but that value is typically unknown
- we set a criterion using only the null hypothesis (noise-alone distribution)

CRITERION

- we will examine the data to see if we should reject H_{0}
- we will do that by comparing the sample mean, \bar{X}, to the hypothesized value of the population mean, μ
- the bottom-line is whether \bar{X} is sufficiently different from μ to reject H_{0}
- but we have to consider four things to quantify the term sufficiently different
- standard scores
- errors in hypothesis testing
- level of significance
region of rejection

STANDARD SCORES

- we previously used standard scores to indicate how much a given score deviates from a distribution mean
- We do the same kind of thing here, but we want to know how a sample mean, \bar{X} deviates from what the sampling distribution would be if the null hypothesis is true
- We give the standard score a special term:

$$
t=\frac{\bar{X}-\mu}{s_{\bar{X}}}
$$

- We compute everything else using the sampling distribution of this t value: the t distribution, which is similar to a normal distribution with fatter tails and requires degrees of freedom:

$$
d f=n-1
$$

- after deciding to reject or not reject H_{0} there are four possible situations
- A true null hypothesis is rejected. (False alarm)
- ** A true null hypothesis is not rejected. (Correct rejection)
- A false null hypothesis is not rejected. (Miss)
- ** A false null hypothesis is rejected. (Hit)
- errors are unavoidable
- we want to minimize the probability of making errors, given the particular data set we have

ERRORS

- suppose you have a new, untested, and expensive treatment for cancer
- you run a test to judge whether the drug is better than existing drugs
- if you reject H_{0}, indicating that the drug is more effective, when in fact it is not, people will spend a lot of money for no reason (Type I error)
- if you fail to reject H_{0}, indicating that the drug is not effective, when in fact it is, people will not use the drug (Type II error)
- scientific research tends to focus on avoiding Type I errors
- two types of errors:
- Type I error: when we reject a true null hypothesis (false alarm).
- Type II error: when we do not reject a false null hypothesis (miss).

	State of nature	
Decision made	H_{0} true	H_{0} false
Reject H_{0}	Type I error	Correct decision
Do not reject H_{0}	Correct decision	Type II error

- generally, decreasing the probability of making one type of error increases the probability of making the other type of error
- alpha (α) level
- indicates probability of Type I error
- frequently we choose $\alpha=0.05$ or $\alpha=0.01$
- that is, the corresponding decision to reject H_{0} may produce a Type I error 5% or 1% of the time
- a statement about how much error we will accept
- usually chosen before the data is gathered depends upon use of the analysis

REGION OF REJECTION

- α is a probability
- it identifies how much risk of Type I error we are willing to take (rejecting H_{0} when it is true)
- consider our example of SAT scores

$$
H_{0}: \mu=455
$$

- suppose we also know the sample standard deviation

$$
s=100
$$

- and our sample size is $n=144$

REGION OF REJECTION

- area under the curve represents the probability of getting the corresponding t values, if the H_{0} is true
- the extreme tails of the sampling distribution correspond to what should be very rare t values, and thus very rare sample means

REGION OF REJECTION

- we know that the sampling distribution of t is:
- A t distribution with $d f=n-1=143$.
- Has a mean of $\mu=0$, if H_{0} is true
- Has a standard error of the mean

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}=\frac{100}{\sqrt{144}}=8.33
$$

REGION OF REJECTION

- we shade in the extreme α percentage of the sampling distribution
- called the region of rejection
- if our data produces a t value in the region of rejection, we reject H_{0} because it is unlikely that we would get such a value if the H_{0} were true.

REGION OF REJECTION

- values of sample means at the beginning of the region of rejection
- NOTE: α is split up in each tail
- called a two-tailed or non-directional test

TEST STATISTIC

- we want to know how different \bar{X} is from the hypothesized μ in terms of standard error units

$$
\begin{gathered}
t=\frac{\bar{X}-\mu}{s_{\bar{X}}} \\
t=\frac{535-455}{8.33}=9.60
\end{gathered}
$$

- the standard score is the test statistic for testing H_{0} about a population mean
- if the t-score is beyond ± 1.977, it is very unlikely to have occurred if the H_{0} is true.
- we have the following data:
- $\mu=455, H_{0}$
- $n=144$, sample size
- $\bar{X}=535$, observed value for sample statistic
- $s=100$, value of the standard deviation of the population
- $s_{\bar{X}}=8.33$, standard error (calculated earlier)
- from this we can calculate the t-score
- compare the test statistic to the critical value

$$
t=9.60>1.977=t_{c v}
$$

- indicates that the sample mean \bar{X} is extremely rare, given the assumed population mean μ, by chance (random sampling)

p-VALUE

- another way to do it (advocated by your text) is to use the t-value to compute the probability of getting a t-value more extreme than what you found
- p-value
- t distribution calculator

Specify Parameters:
df: 143 t: 9.60
One-tail - Two-tails
Shaded area: 0.0000
Recalculate
p-VALUE

- We find $p \approx 0$
- Since the probability is small $(<.05)$, then we conclude that the H_{0} is probably not true

Specify Parameters
df: 143 t: 9.60
One-tail ○ Two-tails

Shaded area: 0.0000
Recalculate

- null hypothesis
- rejecting H_{0}
- Type I error
- Type II error
- but there is still a chance that H_{0} is true!
- Test statistic
- Deciding about H_{0}

Why clinical studies use thousands of subjects.

PSY 201: Statistics in Psychology

Lecture 19
Hypothesis testing of the mean
Why clinical studies use thousands of subjects.

Greg Francis

Purdue University
Fall 2023

[^0]
SUPPOSE

- we think the mean value of a population of SAT scores is $\mu=455$
- we can take a sample of $n=144$ from the population and calculate the sample mean of SAT scores $\bar{X}=535$ with sample standard deviation $s=100$

HYPOTHESIS TESTING

- four steps
(1) State the hypothesis and criterion.
(2) Compute the test statistic.
(3) Compute the p value
(4) Make a decision.

RECAP OF LAST TIME

- (1) State the hypotheses and set the criterion

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu \neq 455
\end{aligned}
$$

- $\alpha=0.05$

SAMPLE SIZE

- suppose we had the same situation as before, but we had instead found

$$
\bar{X}=465
$$

- with a sample size of $n=500$
- (1) State the hypotheses and set the criterion

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu \neq 455
\end{aligned}
$$

- $\alpha=0.05$

SAMPLE SIZE

- (3) Compute the p-value (using the t-distribution calculator with $d f=n-1=499)$:

$$
p=0.0251
$$

- (4) Make a decision: $p<\alpha$, so do reject H_{0}
- the found sample mean would be a rare event if H_{0} were true. The probability that $|\bar{X}| \geq 465$ would be found by random sampling is less than .05

SAMPLE SIZE

- (2) Compute the test statistic

$$
t=\frac{\bar{X}-\mu}{s_{\bar{X}}}
$$

- we need to recompute $s_{\bar{X}}$

$$
\begin{aligned}
s_{\bar{X}} & =\frac{s}{\sqrt{n}}=\frac{100}{\sqrt{500}}=4.47 \\
t & =\frac{465-455}{4.47}=2.24
\end{aligned}
$$

CALCULATOR

- you need to understand the math and calculations, but generally you should not do it

Confidence interval
－often hear about medical studies that track thousands of patients
－why do they need so many people？
－a larger sample makes for less variation in the sampling distribution of the mean

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}
$$

－thus，if the null hypothesis really is false，you are more likely to reject it with a larger sample
－if the null hypothesis is really true，you are not more likely to reject it （no extra mistakes with a larger sample size！）
－several things are worth noting
－The α probability is about the process of making decisions．It controls Type I error rates，but for any given decision you do not know if you made an error or not．
－Even when we reject H_{0} ，there is always a chance that it is true．
－Even when we do not reject H_{0} ，there is always a chance that it is false
－The statement $p<0.05$ is about the statistic given the hypothesis， not about the hypothesis．We never conclude that H_{0} is false with probability 0.95 ．
－Technically，we have done all of this before．
－These techniques are quantifiable．
－No inclusion of knowledge about the direction of difference．

DIRECTIONAL HYPOTHESIS

－we choose a significance level，α
－indicates probability of Type I error
－earlier，we split this error across the two tails of the sampling distribution

DIRECTIONAL HYPOTHESIS

－suppose we know（or strongly suspect）that if the sample mean \bar{X} is different from the population mean μ ，it will be greater
－then we don＇t need to worry about the left－side tail

REGION OF REJECTION

－if we only have to worry about one tail，the region of rejection（in that tail）is larger！
－with $d f=143$ ，last 5% starts with a t－score of 1.656
－we can reject H_{0} when the difference between \bar{X} and μ is smaller！

REGION OF REJECTION

－area under the curve represents the probability of getting the corresponding t values，given that H_{0} is true
－the extreme right tail of the sampling distribution corresponds to what should be very rare t values
－critical t－score value is 1.656

EXAMPLE

－we know that the sampling distribution of t is：
－A t distribution with $d f=143$ ．
－Has a mean of $\mu=0$ ．
－Has a standard error of the mean

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}=\frac{100}{\sqrt{144}}=8.33
$$

TEST STATISTICS

－we compute test statistic

$$
\begin{gathered}
t=\frac{\bar{X}-\mu}{s_{\bar{X}}} \\
t=\frac{535-455}{8.33}=9.60
\end{gathered}
$$

－greater than critical value

$$
9.60>1.656
$$

－reject H_{0}
－The same decision is found by computing the p－value

$$
p \approx 0<\alpha=0.05
$$

EXAMPLE

－suppose everything was the same，except we had hypotheses：

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu<455
\end{aligned}
$$

－then we would shift the region of rejection to the left tail

CALCULATOR

－you need to understand the math and calculations，but generally you should not do it

Enter data：

Sample size $n=144$
Sample mean $\bar{X}=535$
Sample standard deviation $s=100$
Specify hypotheses：
$H_{0}: \mu=455$
H_{a} ：Nogative ono－tail ©
$\alpha=0.05$
Run Test
Null hypothesis
Altermative hypo
Alternative hypothesis
Sample size
Sample mean
Sample standard deviation
Sample standard error Test statistic Degrees of freedom p value
p value
Decision $\begin{array}{ll} & t=9 \\ \text { Decision } & p=1.000000 \\ & \text { Denfidence intera }\end{array}$
Decision Do not the reject null hypothesis
Confidence interval critical value $t_{c v}=1.976692$
Cl Confidence interval
$\mathrm{C}_{95}=(518.527565,551.472435)$

EXAMPLE

－the critical t－score value becomes -1.656
－with our sample mean of $\bar{X}=535$ ，and $z=9.60$ ，
－we cannot reject H_{0}

CONCLUSIONS

－hypothesis testing
－sample size
－directional test

PSY 201: Statistics in Psychology

- Designing experiments
- Power
- Selecting sample size

Plan ahead!
Lecture 20

Plan ahead!

Greg Francis

Purdue University
Fall 2023

BREAKFAST

- Consider an example from the text:
- A runner typically does not have breakfast before going on a 5 K run. She wonders if eating breakfast before the run would influence her running time.
- She wants to design an experiment to test whether breakfast influences her running time. She knows that without breakfast her mean running time (in minutes) is

$$
H_{0}: \mu=22.5
$$

- she will test against

$$
H_{a}: \mu \neq 22.5
$$

- with $\alpha=0.05$
- She plans to try running with breakfast and measure her running time, but she needs to know how many how many days she should try this. (What is an appropriate sample size?)

SAMPLE SIZE

- We know that sample size matters for hypothesis testing.
- Standard error gets smaller

$$
s_{X}=\frac{s}{\sqrt{n}}
$$

- and $d f=n-1$ gets bigger which makes for smaller tails in the t distribution
- More data is better, but it comes with a cost.
- Experiment takes longer.
- It may be trouble to wake up earlier to have breakfast

EASY APPROACH

- Suppose the runner decides to try running for a week and then run a hypothesis test. She runs every day, so the sample size will be $n=7$.
- Is this a good strategy? Is the experiment likely to work, even if breakfast does change mean running time?
- There is no way of knowing whether $n=7$ is a large enough sample; it depends on how much change breakfast causes and how much variability there is in the data

$$
t=\frac{\bar{X}-\mu}{s_{\bar{X}}}
$$

- Of course, before running the experiment, we do not know \bar{X} or s However, perhaps we can estimate these values or use something meaningful.

ESTIMATE \bar{X}

- Past data cannot tell us how much breakfast should change running times, but the runner might have some idea of how much matters to her
- To motivate her to wake up earlier and have breakfast before running, eating breakfast needs to shorten her mean running time by at least 2 minutes. Thus, she hopes that when eating breakfast her running time measures are from a distribution with $\mu=20.5$ minutes.
- We set a specific alternative hypothesis:

$$
H_{a}: \mu=20.5
$$

- If she runs the experiment, she will typically get \bar{X} close to 20.5 minutes, but it will vary from sample to sample
- The runner keeps track of her past running times (that's how she knows the mean is $\mu=22.5$ minutes)
- The same data allows her to compute the standard deviation of her past running times. Let us suppose it is $\sigma=2.2$ minutes. It seems reasonable to suppose that over the week when she eats breakfast the standard deviation of running times will be about the same. Thus, the standard error of her mean running time for the week with breakfast will be similar to:

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}=\frac{2.2}{\sqrt{7}}=0.8315
$$

- Of course, it will vary from sample to sample.

SIGNAL DETECTION

- With all this information, we have something similar to signal detection
- Noise-alone distribution is the H_{0}, breakfast does not affect running times
- Signal-and-noise distribution is the specific H_{a}, where breakfast reduces running times by 2 minutes
- $\sigma=2.2$ minutes, so with $n=7, s_{\bar{X}}=0.8315$
- The hypothesis test procedure establishes criterion t values, if we get data with t bigger than those criterion values, we will reject H_{0}
- What is the probability we will reject H_{0} if the specific H_{a} is true? This is the "hit" ' rate.

SIGNAL DETECTION

- Graphically, if H_{0} is true, then we will get sample means from the red distribution
- If the specific H_{a} is true, then we will get sample means from the green distribution

 Fall 2023 8/1

POWER

- If the specific H_{a} is true, then the probability of rejecting the null is the area under the distribution for the specific H_{a} over the region of rejection

- Looks pretty close to 0.5

HYPOTHESIS TEST

- When doing the hypothesis test, the runner will compute a t-value and see if it is more extreme than

$$
t_{c v}= \pm 2.44691
$$

- In terms of mean running times, this corresponds to:

$$
\begin{aligned}
& \bar{X}_{\text {lower }}=\mu-s_{\bar{X}} t_{c v}=22.5-(0.8315)(2.44691)=20.465 \\
& \bar{X}_{\text {upper }}=\mu+s_{\bar{X}} t_{c v}=22.5+(0.8315)(2.44691)=24.535
\end{aligned}
$$

- Note the region of rejection!

CALCULATOR

- Online power calculator does the work for you

Specify the population characteristics:	
$H_{0}: \mu_{0}=22.5$	
$H_{a}: \mu_{a}=20.5$	
$\sigma=2.2$	
Or enter a standardized effect size	
$\frac{\mu_{s}-\mu_{0}}{\sigma}=\delta=-0.909990$	
Specify the properties of the test:	
Type of test Two-talis	
Type I error rate, $\alpha=0.05$	
Power $=0.522882 \%$	Calculate minimum sample size
Sample size, $n=7$	Calculate power

- Even if the effect exists, the probability that your hypothesis test will show the effect is only 0.52 .
- Maybe it is not worth doing the experiment.

INCREASE SAMPLE SIZE

－Or，the runner may decide it is worth trying to run with breakfast for two weeks．Then $n=14$ ．
－We use the on－line power calculator to find the probability such an experiment would reject the H_{0} if there is an effect．

Specify the population characteristics：	
$H_{0}: \mu_{0}=22.5$	
$H_{a}: \mu_{a}=20.5$	
$\sigma=2.2$	
Or enter a standardized effect size	
$\frac{\mu_{0}-\mu_{0}}{\sigma}=\delta=-0.909090$	
Specify the properties of the test：	
Type of test Two－tals	
Type I error rate，$\alpha=0.05$	
Power＝0．881322	Calculate minimum sample size
Sample size，$n=14$	Calculat power

－Now the probability of finding an effect is 0.88 ！

FINDING SAMPLE SIZE

－If you want more power，you have to pay for it with a larger sample size．
－To get 95% power

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& H_{0}: \mu_{0}=22.5 \\
& H_{a}: \mu_{a}=20.5 \\
& \text { Or enter a standerdized effect size } \\
& \frac{\mu_{a}-\mu_{0}}{\sigma}=\delta=-0.90909 \\
& \text { Specify the properties of the test: } \\
& \text { Type of test Two-tals } \\
& \text { Type } \mathrm{I} \text { error rate, } \alpha=0.05 \\
& \text { Power= } .95 \\
& \text { Sample size, } n=18 \\
& \text { Calculate minimum sample size } \\
& \text { Calculate power }
\end{aligned}
$$

－the runner needs to gather data over 18 runs

FINDING SAMPLE SIZE

－Perhaps it makes more sense to identify the smallest sample that will give you a desired power．
－We enter the desired power and click on the Calculate minimum sample size button．
－To get 80\％power：

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& \qquad \begin{aligned}
H_{0}: & \mu_{0}=22.5 \\
H_{a} & : \mu_{a}
\end{aligned}=20.5 \\
& \sigma
\end{aligned}
$$

－the runner needs to gather data over 12 runs

POWER ESTIMATES

－Note，the power probabilities depend on the effect being as large as what is given．The runner used a＂smallest meaningful＂effect size for her，$\mu_{a}=20.5$ ，a 2 minute reduction compared to the null hypothesis， $\mu_{0}=22.5$
－The true effect may be larger or smaller than this difference．If the true effect is larger，the experiment will be even more likely to reject H_{0} than the estimated power．The experiment may use more resources than is necessary，but it will still work．
－If the true effect is smaller，the experiment will be less likely to reject H_{0} than the estimated power．The experiment may not work，but the runner hardly cares because the effect is not big enough for her， anyhow．

SIZE OF EFFECT

－Power increases as the difference between μ_{0} and μ_{a} increases．
－Bigger signal is easier to detect．
－Suppose the runner used a＂smallest meaningful＂effect of 3 minutes， so $\mu_{a}=19.5$ compared to the null hypothesis，$\mu_{0}=22.5$

Specify the population characteristics：	
$H_{a}: \mu_{a}=19.5$	
$\sigma=2.2$	
Or enter a standardized effect size	
$\frac{\mu_{0}-\mu_{0}}{\sigma}=\delta=-1.363636$	
Specify the properties of the test：	
Type of test Two－talis	
Type I error rate，$\alpha=0.05$	
Power $=.95$	Calculate minimum sample size
Sample size，$n=10$	Calculate power

－the runner needs to gather data over 10 runs to have 95% power

DIRECTIONAL HYPOTHESIS

－One－tailed tests are more powerful than two－tailed tests，provided the effect is in the correct tail
－Using $\mu_{a}=20.5$ compared to $\mu_{0}=22.5$ ，the runner might use a one－tailed test when analyzing the data．We noted earlier that $n=18$ gave us 95% power for a two－tailed test．If she plans to use a （Negative）one－tail test，a smaller sample can be used to get the same power：

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& H_{0}: \mu_{0}=22.5 \\
& H_{a}: \mu_{a}=20.5 \\
& \sigma=2.2 \\
& \text { Or enter a standardized effect size } \\
& \frac{\mu_{a}-\mu_{0}}{\sigma}=\delta=-0.909990 \\
& \text { Specify the properties of the test: } \\
& \text { Type of test } \text { Negative one-tail } 0 \\
& \text { Type I error rate, } \alpha=0.05 \\
& \text { Power= } \\
& \text { Sample size, } n=15
\end{aligned}
$$

DIRECTIONAL HYPOTHESIS

－One－tailed tests are more powerful than two－tailed tests，provided the effect is in the correct tail
－Using $\mu_{a}=20.5$ compared to $\mu_{0}=22.5$ ，the runner might use a one－tailed test when analyzing the data．We noted earlier that $n=18$ gave us 95% power for a two－tailed test．If she plans to gather that much data but use a（Negative）one－tail test，the power is larger

α CRITERION

－Suppose the runner plans to use a criterion of $\alpha=0.01$ ．Then，when doing a two－tailed hypothesis test with $n=7$ ，the runner will compute a t－value and see if it is more extreme than

$$
t_{c v}= \pm 3.70743
$$

－In terms of mean running times，this corresponds to：

$$
\begin{aligned}
& \bar{X}_{\text {lower }}=\mu-s_{X} t_{c v}=22.5-(0.8315)(3.70743)=19.417 \\
& \bar{X}_{\text {upper }}=\mu+s_{\bar{X}} t_{c v}=22.5+(0.8315)(3.70743)=25.583
\end{aligned}
$$

$$
\begin{aligned}
& \text { Enter the population characteristics by entering either the mean and } \\
& \text { standard deviation of each population or the standardized effect size. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { standard deviation of acap population or the etandardized effect tize. Select } \\
& \text { the type of test and the Type I error rate. Enter either a desired power value }
\end{aligned}
$$

$$
\begin{aligned}
& \text { the type of test and the Type I Irror rate. Enter either a desired poover value } \\
& \text { or ample size and click the corresponding buton to either Calculate } \\
& \text { minimum sumple sizor Calculat pow }
\end{aligned}
$$

－Power will be smaller！

$$
\begin{aligned}
& \text { Specify the population characterisics } \\
& H_{0}: \mu_{0}=22.5 \\
& H_{a}: \mu_{a}=20.5 \\
& \sigma=2.2 \\
& \text { Or enter a standardized effect size } \\
& \frac{\mu_{n}-\mu_{0}}{\sigma}=\delta=-0.909090 \\
& \text { Specify the properties of the test. } \\
& \text { Type of test Negative one-tail e } \\
& \text { Type I error rate, } \alpha=0.05 \\
& \text { Power }=0.9799340 \text { Calculate minimum sample size } \\
& \text { Sample size, } n=18 \text { Calculate power } \\
& \begin{array}{l}
\text { Enter the population characteristics by entering either the mean and } \\
\text { standard deviation of each population or the standardized effect size. }
\end{array} \\
& \begin{array}{l}
\text { standard deviation of each population or the standardized effect size. Select } \\
\text { the type of test and the Type I rero rate. Enter either desired power value }
\end{array} \\
& \begin{array}{l}
\text { the type of test and the Type I error rate. Enter either a desired power value } \\
\text { or a sample size and click the corresponding button to either Calculate }
\end{array} \\
& \begin{array}{l}
\text { or a sample size and click the corresponding } \\
\text { minimum sample size or Calculate power. }
\end{array}
\end{aligned}
$$

α CRITERION

- Using the power calculator, we find that with $\alpha=0.01, n=7$, $\mu_{0}=22.5, \mu_{a}=20.5$, and $\sigma=2.2$ for a two-tailed test, power of 0.216 .

```
Specify the population characteristics:
            H
            Ha}:\mp@subsup{\mu}{a}{}=20.
            \sigma=2.2
Or enter a standardized effect size
            \frac{\mu}{a}-\mp@subsup{\mu}{0}{}}\sigma=\delta=-0.90909
Specify the properties of the test:
        Type of test Two-tails 0
    Type I error rate, }\alpha=0.0
            Power=0.215526t Calculate minimum sample size
        Sample size, }n=
    Calculate power
```

α CRITERION

- Using the power calculator, we find that with $\alpha=0.01, \mu_{0}=22.5$, $\mu_{a}=20.5$, and $\sigma=2.2$ for a two-tailed test, to get a power of 0.9, we need $n=22$

```
= Specify th
    ulation characteristics:
```

 \(H_{0}: \mu_{0}=22.5\)
 \(H_{a}: \mu_{a}=20.5\)
 \(\sigma=2.2\)
 Or enter a standardized effect size
 \(\frac{\mu_{a}-\mu_{0}}{\sigma}=\delta=-0.90909 \mathrm{C}\)
 Specify the properties of the test:
 Type of test Two-tails
 Type I error rate, \(\alpha=0.01\)
 Power= 9
 Calculate minimum sample size
 Sample size, \(n=2\)
 Calculate power

TRADE OFFS

- Experimental design always involves trade offs
- You want studies with large power (probability of rejecting the null hypothesis)
- You can only estimate power by hypothesizing how big the effect is, and estimating the variability of your data
- Bigger samples provide more power (but cost resources: time and money)
- Reducing the Type I error rate (α) also decreases power
- Signal Detection Theory
- Type I error corresponds to false alarms
- Power corresponds to hits
- power
- experimental design
- sample size
- you should do it before gathering data
- Estimating means
- Confidence intervals

How tall is the room?

PSY 201: Statistics in Psychology

Lecture 21
Estimation of population mean
How tall is the room?

Greg Francis

Purdue University

Fall 2023

LAST TIME

- we know how to check if a sample mean, \bar{X}, is statistically significantly different from a hypothesized population mean, μ.
- but sometimes we have no idea what μ is!
- we would like to be able to estimate μ using the sample data we have
- statistical estimation

POINT ESTIMATION

- single value that represents the best estimate of a population value
- when we want to estimate μ, the best point estimate is the sample mean \bar{X}
- but the estimate depends on which sample we select!

INTERVAL ESTIMATION

- we get a better idea of the value of μ by considering a range of values that are likely to contain μ
- we will show how to build up confidence intervals using the properties of the sampling distribution of the mean

INTERVAL ESTIMATION

- with the sampling distribution we can calculate (using the online Inverse Normal Distribution Calculator) that 95% of all sample means will lie between 42.02 and 43.98
- but since we do not really know the value of μ, we must

estimate it

Specify Parameters:
Mean 43
SD 0.5
Area .05
Above
Below

- Outside 42.02 and 43.98
σ KNOWN
- to demonstrate our technique, suppose we have a population of scores with $\mu=43, \sigma=10$
- from the population we get the sampling distribution for samples of size $n=400$ with

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=0.50
$$

CONFIDENCE INTERVALS

- construct an interval around the observed statistic, \bar{X}
$\mathrm{Cl}=$ statistic \pm (critical value) (standard error of the statistic)

$$
\mathrm{Cl}=\bar{X} \pm\left(t_{c v}\right)\left(s_{\bar{X}}\right)
$$

- where
- \bar{X} is the sample mean
- $t_{c v}$ is the critical value using the appropriate t distribution for the desired level of confidence
- $s_{\bar{X}}$ is the estimated standard error of the mean

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}
$$

LEVEL OF CONFIDENCE

- degree of confidence that computed interval contains μ
- usually complement of level of significance, α
- level of confidence is $(1-\alpha)$
- calculating the critical value $t_{c v}$ is the same!
- e.g., for $\alpha=0.05,(1-\alpha)=0.95$, and

$$
t_{c v}=1.9659
$$

- (using the Inverse t Distribution calculator with $\mathrm{df}=399$)

CONFIDENCE INTERVAL

- this means we are 95% confident that the interval $(43.62,45.58)$ contains the unknown value μ
- Our procedure for producing the interval contains $\mu 95 \%$ of the time
- note: if $\mu=43$ like was said originally, we are wrong!
- Cl does not contain μ (no way to avoid error completely)!

- suppose we calculate $\bar{X}=44.6$
- the confidence interval is then

$$
\begin{gathered}
\mathrm{Cl}=\bar{X} \pm\left(t_{c v}\right)\left(s_{\bar{X}}\right) \\
\mathrm{Cl}_{95}=44.6 \pm(1.9659)(0.50) \\
\mathrm{Cl}_{95}=(43.62,45.58)
\end{gathered}
$$

EXAMPLE

- Guess the height of this room in feet, and write down your guess on a piece of paper
- Now go around the room and get 10 guesses from other random people
- Then, tell me your guess
- Calculate the mean and standard deviation for your sample (use the on-line calculator for a one-sample t test)

$$
\begin{gathered}
\bar{X}=\frac{\sum x_{i}}{n} \\
s=\sqrt{\frac{\sum_{i} X_{i}^{2}-\left[\left(\sum_{i} X_{i}\right)^{2} / n\right]}{n-1}}
\end{gathered}
$$

- I'll calculate the population mean for the class
- each of you will calculate a confidence interval, for your sample, with $\alpha=0.05$

CONFIDENCE INTERVAL

$$
\mathrm{Cl}=\bar{X} \pm\left(t_{c v}\right)\left(s_{\bar{X}}\right)
$$

－Calculate standard error of the mean

$$
s_{X}=\frac{s}{\sqrt{n}}=\frac{s}{\sqrt{10}}=
$$

－we have

$$
\text { d.f. }=n-1=10-1=9
$$

－so from the Inverse t Distribution Calculator，we find that

$$
t_{c v}=2.262
$$

WHAT DOES THIS MEAN？

－we conclude with 95% confidence that your interval contains μ
－this is a probabilistic statement about the interval
－μ is a parameter，a fixed number

$$
\mu=
$$

－different samples produce different confidence intervals，but 95% of the time the interval would contain μ
－check

CONFIDENCE INTERVALS

－thus

$$
\begin{gathered}
\mathrm{Cl}_{95}=\bar{X} \pm\left(t_{c v}\right)\left(s_{\bar{X}}\right) \\
\mathrm{Cl}_{95}=\bar{X} \pm(2.262)\left(s_{\bar{X}}\right) \\
\mathrm{Cl}_{95}=(, \quad)
\end{gathered}
$$

CONFIDENCE

－we never say that a specific confidence interval contains μ with probability 0.95
－either the interval contains μ or it does not
－we can say that the procedure of producing Cl＇s produce intervals that contain μ with probability 0.95
－we do talk about the confidence that an interval includes μ
－we would say that the confidence interval contains μ with confidence of 0.95
－the confidence is in the procedure of calculating Cls

CONCLUSIONS

- estimation
- confidence intervals
- t distribution
- interpretation
- more on estimation
- relationship between confidence intervals and hypothesis testing
- statistical precision

Less than 5\% of published psychological research should be wrong (and why that probably isn't true).

PSY 201: Statistics in Psychology

Lecture 22
Estimation of population mean
Less than 5\% of published psychological research should be wrong (and why that probably isn't true).

Greg Francis
Purdue University
Fall 2023

LAST TIME

- construct an interval around an observed statistic, \bar{X}

$\mathrm{Cl}=$ statistic \pm (critical value) (standard error of the statistic)

$$
\mathrm{Cl}=\bar{X} \pm\left(t_{c v}\right)\left(s_{\bar{X}}\right)
$$

CONFIDENCE

- we never say that a specific 95% confidence interval contains μ with probability 0.95
- either the interval contains μ or it does not
- we can say that the procedure of producing Cl's produce intervals that contain μ with probability 0.95
- we do talk about the confidence that an interval includes μ
- we would say that the confidence interval contains μ with confidence of 0.95
- the confidence is in the procedure of calculating Cl s

CONFIDENCE INTERVAL

- given our data, we could also compute confidence intervals around $\bar{X}=535$
- $t_{c v}= \pm 1.96$

$$
\begin{gathered}
\mathrm{Cl}=\bar{X} \pm\left(t_{c v}\right)\left(s_{\bar{X}}\right) \\
\mathrm{Cl}_{95}=535 \pm(1.96)(8.33) \\
\mathrm{Cl}_{95}=(518.67,551.33)
\end{gathered}
$$

HYPOTHESIS TESTING

- remember SAT data:

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu \neq 455
\end{aligned}
$$

- calculated sampling distribution
- for $\alpha=0.05, \bar{X}=535, s_{\bar{X}}=8.33$
- $t=9.6, p \approx 0$, we rejected H_{0}

- note: the rejected $H_{0}: \mu=455$ is consistent with the Cl
- 455 is not in the 95% confidence interval $(518.67,551.33)$
- CI contains only tenable values of μ, given the sampled data

CI AND HYPOTHESIS TESTS

- Cls ask: which values of μ would it be reasonable for me to get the value of \bar{X} that I found?
- Hypothesis tests ask: is the value of \bar{X} I found consistent with a hypothesized value of μ ?
- "reasonable" and "consistent" are defined relative to Type I error (α), and confidence (1- α)

HYPOTHESIS TESTING

- constructing a Cl is like testing a large number of non-directional hypotheses simultaneously:

$$
\begin{gathered}
H_{0}: \mu=435 \\
H_{0}: \mu=22 \\
H_{0}: \mu=522 \\
H_{0}: \mu=549 \\
H_{0}: \mu=563
\end{gathered}
$$

- anything in the $\mathrm{Cl}(518.67,551.33)$ would be not be rejected, anything not in the Cl would be rejected

EXAMPLE

- On the papers going around the room, write down the number of math-based courses you have taken at college (include physics, engineering, and computer science, if it was largely math-based)
- Now go around the room and sample this information from 6 other people
- Calculate the mean and standard deviation for your sample (use the on-line calculator of the textbook)

$$
\begin{gathered}
\bar{X}=\frac{\sum X_{i}}{n} \\
s=\sqrt{\frac{\sum_{i} X_{i}^{2}-\left[\left(\sum_{i} X_{i}\right)^{2} / n\right]}{n-1}}
\end{gathered}
$$

HYPOTHESIS TEST

- (1) State the hypothesis and set the criterion:

$$
\begin{aligned}
& H_{0}: \mu=3 \\
& H_{a}: \mu \neq 3
\end{aligned}
$$

- $\alpha=0.05$
- (2) Compute test statistic:
- Calculate standard error of the mean

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}=\frac{s}{\sqrt{6}}=
$$

- Compute the t-value

$$
t=\frac{\bar{X}-3}{s_{\bar{X}}}=
$$

- (3) Compute the p-value:
- use the t Distribution calculator with $d f=n-1=5$ to compute
$p=$
- (4) Make your decision:

CONFIDENCE INTERVAL

$$
\mathrm{Cl}=\bar{X} \pm\left(t_{c v}\right)\left(s_{\bar{X}}\right)
$$

－Calculate standard error of the mean

$$
s_{X}=\frac{s}{\sqrt{n}}=\frac{s}{\sqrt{6}}=
$$

－with $n=6, d f=5$ ，so the Inverse t Distribution calculator gives $t_{c v}=2.571$
－plug everything into your Cl formula
－Who rejected H_{0} ？
－Who have the value 3 outside their CI ？
－Should be similar！
－Now repeat everything for $H_{0}: \mu=4$ ，using the textbook＇s online calculator
－notice what is required in the new calculations！

STATISTICAL PRECISION

－consider the equation for confidence intervals

$$
\mathrm{Cl}=\bar{X} \pm\left(t_{c v}\right)\left(s_{\bar{X}}\right)
$$

－where
－ \bar{X} is the sample mean
－$t_{c v}$ is the critical value using the appropriate t distribution for the desired level of confidence
－$s_{\bar{X}}$ is the estimated standard error of the mean

$$
s_{\bar{x}}=\frac{s}{\sqrt{n}}
$$

－smaller $t_{c v}$ or $s_{\bar{X}}$ produce narrower widths

STATISTICAL PRECISION

－since

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}
$$

－increasing the sample size n produces narrow widths of Cl
－narrower widths imply greater precision about where μ is located
－increasing n also modifies $t_{c v}$ by changing degrees of freedom

$$
\mathrm{df}=n-1
$$

－larger df leads to smaller $t_{c v}$
（see the Inverse t Calculator）

- we can also change $t_{c v}$ by changing the level of confidence
- larger level of confidence, implies smaller α, which implies larger $t_{c v}$, which implies larger width of Cl
- makes sense, we become more confident the interval includes μ by broadening the interval
- of course, then we are less sure about the value μ

PUBLISHING CHALLENGES

- Researchers often use statistical significance as a way of identifying what findings should be published
- If only findings with $p<.05$ are published, then journals can be filled with findings where H_{0} is actually true
- even if H_{0} is true, around 5% of samples will produce a significant p value
- If non-significant findings are not published, then it becomes hard to interpret the findings that actually are published (publication bias)
- most researchers in the behavioral sciences use $\alpha=0.05$
- this means that they make a Type I error only 5\% of the time (or less)
- no way to completely avoid making mistakes
- this makes it quite likely that some of the data in published journals is wrong
- it is important in science to double (and triple) check everything
- if a bit of data is tremendously important, better replicate the experimental finding

SAMPLING CHALLENGES

- Suppose you run a study with $n=20$ subjects and get $p=.07$. This does not meet the $\alpha=0.05$ criterion.
- It is tempting to add an additional 10 subjects (for a total of $n=30$) and do the analysis again
- This is a problem because you have given yourself an extra chance to get a significant outcome. Your Type I error is bigger than the $\alpha=0.05$ that you intended.
- Cannot add subjects to an experiment and re-analyze. Nor can you stop data collection when you get a significant result (data peeking, optional stopping).
- The sampling distribution is only valid for a fixed sample size. In the above cases, the sample size is not fixed.
- To avoid these problems, you have to plan your experiment carefully in advance (power).
- One way to avoid these issues is to run your study to focus on measuring things "well enough".
- You might want to keep gathering data until the width of a 95% confidence interval is "small enough"
- Then you could test the H_{0}
- Of course, you have to come up with some definition of small enough
- estimation
- confidence intervals
- relationship with hypothesis testing
- statistical precision
- challenges

NEXT TIME

- more hypothesis testing
- tests for a proportion

Can you read my mind: Part II?

PSY 201: Statistics in Psychology
Lecture 23
Hypothesis tests for a proportion Can you read my mind? Part II

Greg Francis
Purdue University
Fall 2023

HYPOTHESIS TESTING

- four steps
(1) State the hypothesis and the criterion
(2) Compute the test statistic.
(3) Compute the p-value.
(9) Make a decision

HYPOTHESIS TESTING

- we need to know the properties of the sampling distribution
- for the mean, the central limit theorem tells us that the sampling distribution is normal, and specifies the mean and standard deviation (standard error)
- area under the curve of the sampling distribution gives probability of getting that sampled value, or values more extreme (p-value)
- for other types of statistics, the sampling distribution is different
- area under the curve of sampling distribution still gives probability of getting that sampled value, or values more extreme
- proportion

HYPOTHESIS TESTING

- the approach is still basically the same
- we compute

$$
\text { Test statistic }=\frac{\text { statistic }- \text { parameter }}{\text { standard error of the statistic }}
$$

- and use it to compute a p-value, which we compare to α

PROPORTION

- many times we want to know what proportion (P) of a population has a certain trait
- Own a phone.
- Are a democrat.
- Are a republican.
- Own a computer.
- ...
- dichotomous population (have trait or do not)
- percentages

PROPORTION

- we can take a random sample and calculate a sample proportion p
- we can test hypotheses about the population parameter P e.g.

$$
\begin{aligned}
& H_{0}: P=0.5 \\
& H_{a}: P \neq 0.5
\end{aligned}
$$

- the sampling distribution of p is the binomial distribution
- for large samples it is very close to the normal distribution

PEPSI CHALLENGE

- several years ago Pepsi sponsored the Pepsi Challenge where you sampled Coke and Pepsi and decided which tasted better
- after testing hundreds of people, they found that more than half the Coke drinkers preferred Pepsi (63\%)
- how would we test to see if the proportion of people who preferred Pepsi over Coke was a significant proportion (different from chance)?
- an estimate of the standard error of the sampling distribution (standard error of the sample proportion) is:

$$
s_{p}=\sqrt{\frac{P Q}{n}}
$$

- $P=$ population proportion possessing characteristic
- $Q=1-P=$ population proportion not possessing characteristic
- $n=$ sample size
- now we can apply the techniques of hypothesis testing!
- Step 1. State the hypothesis and criterion. By chance we would expect the proportion of people that preferred Pepsi would be 50\%

$$
\begin{aligned}
& H_{0}: P=0.5 \\
& H_{a}: P \neq 0.5
\end{aligned}
$$

- Let's set our level of significance at $\alpha=0.05$, two-tailed test

CRITERION

－Step 2．Compute the test statistic．Suppose the sample proportion is

$$
p=\frac{189}{300}=0.63
$$

－Let＇s suppose $n=300$ people were tested，and so the standard error of the sample proportion is：

$$
s_{p}=\sqrt{\frac{P Q}{n}}=\sqrt{\frac{(0.5)(0.5)}{300}}=0.02886
$$

－the test statistic is：

$$
z=\frac{p-P}{s_{p}}=\frac{0.63-0.5}{0.02886}=4.50
$$

－Step 3．Compute the p－value．We use the Normal Distribution Calculator to compute

$$
p \approx 0
$$

－Step 4．Make a decision．Since $p<\alpha=0.05$ ，we can reject H_{0} ！
－If $P=0.5$ ，the probability of getting $p=0.63$ ，or an even bigger difference from $P=0.5$ ，from a random sample of 300 people is less than 0.05 ．
－The observed difference is a significant difference．

CONFIDENCE INTERVALS

－Let＇s construct a confidence interval with level of confidence $1-\alpha=0.95$
－The critical value $z_{c v}$ is found from the Inverse Normal Distribution Calculator

$$
z_{c v}=1.96
$$

－so

$$
C l_{95}=p \pm(1.96)\left(s_{p}\right)
$$

－For the confidence interval，we recompute the standard error by using the estimate from the sample

$$
\begin{gathered}
s_{p}=\sqrt{\frac{p q}{n}}=\sqrt{\frac{(0.63)(0.37)}{300}}=0.0279 \\
C l_{95}=0.63 \pm(1.96)(0.0279) \\
C l_{95}=(0.57,0.68)
\end{gathered}
$$

－which does not include the chance level $P=0.5$

MIND READING

- Now, I tell you my special word, and we find out how many of you were correct. We are measuring p, the sample proportion
- we can test whether you can read my mind
- (1) State the hypothesis and the criterion
- the null hypothesis is that you cannot read my mind, so we say that

$$
\begin{gathered}
H_{0}: P=\frac{1}{6}=0.167 \\
H_{a}: P \neq 0.167
\end{gathered}
$$

- where 0.167 is what you would get just by guessing
- $\alpha=0.10$

POWER

- How would we design a good experiment to test Mind Reading abilities?
- How big a sample do we need to have a 90% chance of rejecting the H_{0} ?
- Conceptually, this is the same issue as estimating power or sample size for a hypothesis test of means
- We just need to use the sampling distribution for a sample proportion instead of the sampling distribution for a sample mean

MIND READING

- (2) Compute the test statistic

$$
\begin{gathered}
s_{p}=\sqrt{\frac{P Q}{n}}=\sqrt{\frac{(0.167)(0.833)}{n}}=\sqrt{\frac{0.1391}{n}}= \\
z=\frac{p-P}{s_{p}}=
\end{gathered}
$$

- (3) Which we plug in to the Normal Distribution Calculator to find the p-value
- (4) Make a decision
- We can do it all with the One Sample Proportion Test Calculator in the textbook

POWER

- We have to set the specific proportion for the alternative hypothesis
- Suppose we plan to test

$$
H_{0}: P=0.167, H_{a}: P \neq 0.167
$$

- and we set the specific alternative as

$$
H_{a}: P_{a}=0.2
$$

- What is the probability that a random sample of $n=25$ will reject the H_{0} ?
- The on-line calculator does all the work!

POWER

```
Specify the population characteristics:
    \(H_{0}: P_{0}=0.167\)
        \(H_{a}: P_{a}=0.2\)
Specify the properties of the test:
        eproperties of the test:
        rror rate, \(\alpha=0.05\)
        \(\begin{aligned} \text { Power } & =0.090999 \quad \text { Calculate minimum sample size }\end{aligned}\)
    Sample size, \(n=25\)
    Calculate power
```

- Less than 10% chance of rejecting the null hypothesis
- What sample size do we need to have 90% power?

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& \qquad \begin{array}{l}
H_{0}: P_{0}=0.167 \\
H_{a}:
\end{array} P_{a}=0.2 \\
& \text { Specify the properties of the test: } \\
& \text { Type of test Two tails } \\
& \text { Type I error rate, } \alpha=0.05 \\
& \text { Power }=0.9 \\
& \text { Sample size, } n
\end{aligned}
$$

- Suppose we plan to test

$$
H_{0}: P=0.167, H_{a}: P>0.167
$$

- What sample size do we need to have 90% power?

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& H_{0}: P_{0}=0.167 \\
& H_{a}: P_{a}=0.2 \\
& \text { Specify the properties of the test: } \\
& \text { Type of test } \text { Postive one-tal } \\
& \text { Type I error rate, },=0.05 \\
& \text { Power }=0.9 \\
& \text { Sample size, } n=1165
\end{aligned}
$$

POWER

CONCLUSIONS

- Let's use the proportion we found for the class as the specific alternative value
- Power?
- Sample size for 90% power?
- testing significance of proportions
- confidence intervals for proportions
- power for tests of proportions

PSY 201: Statistics in Psychology

Lecture 24
Hypothesis testing for correlations

- Fisher z transform
- another t test
- confidence interval
- power

Is there a correlation between homework and exam scores?
Greg Francis

Purdue University

Fall 2019

HYPOTHESIS TESTING

- four steps
(1) State the hypothesis and the criterion
(2) Compute the test statistic.
(3) Compute the p-value.
(4) Make a decision

HYPOTHESIS TESTING

- we need to know the properties of the sampling distribution
- for the mean, the central limit theorem tells us that the sampling distribution is normal, and specifies the mean and standard deviation (standard error)
- area under the curve of the sampling distribution gives probability of getting that sampled value, or values more extreme (p-value)
- for other types of statistics, the sampling distribution is different
- area under the curve of sampling distribution still gives probability of getting that sampled value, or values more extreme
- correlation coefficient

HYPOTHESIS TESTING

CORRELATION COEFFICIENT

- the approach is still basically the same
- we compute

$$
\text { Test statistic }=\frac{\text { statistic }- \text { parameter }}{\text { standard error of the statistic }}
$$

- and use it to compute a p-value, which we compare to α

SAMPLING

- Suppose $\rho=0.22$

- depending on which points we sample, the computed r will take different values

RANDOM SAMPLING

- from a population with scores X and Y, we can calculate a correlation coefficient
- let ρ be the correlation coefficient parameter of the population
- let r be the correlation coefficient statistic from a random sample of the population

SAMPLING DISTRIBUTION

- frequency of different r values, given a population parameter ρ
- not usually a normal distribution!
- often skewed to the left or the right
- cannot find area under curve!

FISHER z TRANSFORM

- for large samples, the sampling distribution of z_{r} is normally distributed
- regardless of the value of ρ
- with a mean

$$
z_{\rho}=\frac{1}{2} \log _{e}\left(\frac{1+\rho}{1-\rho}\right)
$$

- and with standard error (standard deviation of the sampling distribution)

$$
s_{z_{r}}=\sqrt{\frac{1}{n-3}}
$$

- where n is the sample size

FISHER z TRANSFORM

- formula for creating new statistic

$$
z_{r}=\frac{1}{2} \log _{e}\left(\frac{1+r}{1-r}\right)
$$

- where $\log _{e}$ is the "natural logarithm" function
- also sometimes designated as In

- textbook provides a r to z^{\prime} calculator (reversible!)
- means we can use all our knowledge about hypothesis testing with normal distributions for the transformed scores!
- online calculator converts r to z_{r} (it calls it z^{\prime})
- e.g.

$$
\begin{gathered}
r=-0.90 \rightarrow z_{r}=-1.472 \\
r=0 \rightarrow z_{r}=0 \\
r=0.45 \rightarrow z_{r}=0.485
\end{gathered}
$$

- we can convert back the other way from $z_{r} \rightarrow r$ too!

HYPOTHESIS TESTING

- Suppose we study a population of data that we think has a correlation of 0.65 . We want to test the hypothesis with a sample size of $n=30$.
- e.g. family income and attitudes about democratic childrearing
- Step 1. State the hypothesis and criterion

$$
\begin{aligned}
& H_{0}: \rho=0.65 \\
& H_{a}: \rho \neq 0.65
\end{aligned}
$$

- two-tailed test

$$
\alpha=0.05
$$

HYPOTHESIS TESTING

- now we calculate the test statistic

$$
\text { Test statistic }=\frac{\text { statistic }- \text { parameter }}{\text { standard error of the statistic }}
$$

- Step 3. Compute the p-value. From the Normal Distribution calculator, we compute

$$
p=0.7346
$$

$$
z=\frac{z_{r}-z_{\rho}}{s_{z_{r}}}=\frac{0.709-0.775}{0.192}=-0.344
$$

HYPOTHESIS TESTING

- Step 2. Compute the test statistics
- suppose from our sampled data we get

$$
r=0.61
$$

- we need to convert it to a z_{r} score

$$
r=0.61 \rightarrow z_{r}=0.709
$$

- and calculate standard error

$$
s_{z_{r}}=\sqrt{\frac{1}{n-3}}=\sqrt{\frac{1}{27}}=0.192
$$

HYPOTHESIS TESTING

- Step 4. Make a decision.

$$
p=0.7346>0.05=\alpha
$$

- H_{0} is not rejected at the 0.05 significance level
- The probability of getting $r=0.61$ (or a value further away from 0) with a random sample, if $\rho=0.65$, is greater than 0.05 .
- The observed difference is not a significant difference.

A SPECIAL CASE

- hypothesis testing of correlation coefficients can always use Fisher's z transform

$$
\begin{aligned}
& H_{0}: \rho=a \\
& H_{a}: \rho \neq a
\end{aligned}
$$

- special case $a=0$

$$
\begin{aligned}
& H_{0}: \rho=0 \\
& H_{a}: \rho \neq 0
\end{aligned}
$$

- Is there a significant correlation coefficient?
- Is there a linear relationship between two variables?

SAMPLING DISTRIBUTION

- for $\rho=0$ the sampling distribution of the test statistic is a t distribution with $\mathrm{df}=n-2$
- two sets of scores, minus 1 from each set
- no need to convert with Fisher z transform
- we follow the same procedures as before
(1) State the hypothesis. $H_{0}: \rho=0$ and set the criterion
(2) Compute the test statistic.
(3) Compute the p-value
(4) Make a decision.

SAMPLING DISTRIBUTION

- while we needed Fisher's z transformation to convert the sampling distribution into a normal distribution
- it is not necessary for testing $\rho=0$

HYPOTHESIS TESTING

- everything is the same, except the test statistic calculation is a bit different
- it turns out that an estimate of the standard error is:

$$
s_{r}=\sqrt{\frac{1-r^{2}}{n-2}}
$$

- so that the test statistic is:

$$
t=\frac{r-\rho}{s_{r}}=r \sqrt{\frac{n-2}{1-r^{2}}}
$$

- we use this with a t distribution to compute a p-value

EXAMPLE

－$n=32$ scores calculated to get $r=-0.375$
（1）State the hypothesis．$H_{0}: \rho=0, H_{a}: \rho \neq 0, \alpha=0.05$
（2）Compute the test statistic

$$
t=r \sqrt{\frac{n-2}{1-r^{2}}}=(-0.375) \sqrt{\frac{30}{0.859}}=-2.216
$$

（3）Compute the p value using the t Distribution calculator with $\mathrm{df}=n-2=30$

$$
p=0.0344
$$

（4）Interpret the results：$p=0.0344<0.05=\alpha$ ；reject H_{0}

CAREFULL！

－If I treat the class as a population，the correlation simply is what it is． Significance is not an issue！
－If I treat the class as a sample of students who do homework and take exams in statistics，then I can ask about statistical significance

EXAMPLE

－I took the percentage of the first five homework grades and correlated it with the first exam scores

$$
\rho=0.2123
$$

－Is this a significant correlation？

CAREFULL！

－is $r=0.2123$ significantly different from 0？I have $n=30$ scores
－Compute the test statistics．

$$
t=r \sqrt{\frac{n-2}{1-r^{2}}}=1.1496
$$

－use the t Distribution calculator with $\mathrm{df}=n-2=28$

$$
p=0.769
$$

－Interpret the results：$p=0.26>0.05=\alpha$ ，do not reject H_{0}

- For Homework and Reading, $r=0.8964$. I have $n=30$ scores
- Compute the test statistics.

$$
t=r \sqrt{\frac{n-2}{1-r^{2}}}=10.70
$$

- use the t Distribution calculator with $\mathrm{df}=n-2=28$

$$
p \approx 0
$$

- Interpret the results: $p \approx 0<0.05=\alpha$, reject H_{0}
- When we conclude a test is statistically significant, we base that on the observation that observed data (or more extreme) would be rare if the H_{0} were true
- But if we make multiple tests from a single sample, our calculations of probability may be invalid.
- We performed two hypothesis tests from one sample of students.
- Each test has a chance of producing a significant results, even if H_{0} is true
- It is not appropriate to just run various tests with one data set, if all you are doing is looking for significant results (fishing)
- You have to do a different type of statistical analysis

CONFIDENCE INTERVAL

- Always use the Fisher z transform
- Build interval as a Fisher z score and then convert to correlation (r value)

$$
C l=z_{r} \pm z_{C v} S_{z_{r}}
$$

- the correlation between homework and reading scores:

$$
C l_{95}=1.453 \pm(1.96)(0.192)=(1.076,1.831)
$$

- when we convert to r values:

POWER

- How would we design a good experiment to test a correlation?
- How big a sample do we need to have a 90% chance of rejecting the H_{0} ?
- Conceptually, this is the same issue as estimating power or sample size for a hypothesis test of means
- We just need to use the sampling distribution for the Fisher z transform of the sample correlation instead of the sampling distribution for a sample mean

POWER

－We have to specify the specific correlation for the alternative hypothesis
－Suppose we plan to test

$$
H_{0}: \rho=0, H_{a}: \rho \neq 0
$$

－and we set the specific alternative as

$$
H_{a}: \rho_{a}=0.8
$$

－What is the probability that a random sample of $n=25$ will reject the H_{0} ？
－The on－line calculator does all the work！

POWER

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& H_{0}: \rho_{0}=0 \\
& H_{a}: \rho_{a}=0.8 \\
& \text { Specify the properties of the test: } \\
& \text { Type of test Two-talls } \\
& \text { Type I error rate, } \alpha=0.05 \\
& \text { Power }=0.9992948 \quad \text { Calculate minimum sample size } \\
& \text { Sample size, } n=25 \\
& \text { Calculate power }
\end{aligned}
$$

－Higher than 99.9% chance of rejecting the null hypothesis
－What sample size do we need to have 90% power？

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& H_{0}: \rho_{0}=0 \\
& H_{a}: \rho_{a}=0.8 \\
& \text { Specify the properties of the test: } \\
& \text { Type of test } \text { Two-tails } \\
& \text { Type I error rate, } \alpha=0.05 \\
& \text { Power }=0.9 \\
& \text { Sample size, } n=12
\end{aligned}
$$

－However，whether these calculations make sense depends on whether $\rho=0.8$ in reality．

NEXT TIME

－hypothesis testing of two means
－homogeneity of variance
－confidence interval
－robustness and assumptions
Check yourself before you wreck yourself．

HYPOTHESIS TESTING

PSY 201: Statistics in Psychology
 Lecture 25
 Hypothesis testing for two means Check yourself before you wreck yourself.
 Greg Francis
 Purdue University

Fall 2023

$$
\begin{aligned}
& H_{0}: \mu=a \\
& H_{a}: \mu \neq a
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}: \rho=a \\
& H_{a}: \rho \neq a
\end{aligned}
$$

- always compare one-sample to a hypothesized population parameter
- sometimes we want to compare two (or more) population parameters

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

TWO-SAMPLE CASE FOR THE MEAN

- useful when you want to compare means of two groups
- different teaching methods
- survival with and without drug
- depression with and without treatment
- height of males and females
- the null hypothesis is that there is no difference between the means

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

- or another way to say the same thing

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{a}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

DIFFERENCE OF MEANS

- since we want to compare the difference of two population means
- our statistic should be the difference of two sample means

$$
\bar{X}_{1}-\bar{X}_{2}
$$

- and we will compare that statistic to the hypothesized value of the parameter

$$
H_{0}: \mu_{1}-\mu_{2}=0
$$

- if the statistic is much different from the hypothesized parameter, we will reject H_{0}
- same approach as before, different sampling distribution
- drawing a sample with a particular value of \bar{X}_{1} should not affect the probability of drawing a sample with any other particular value of \bar{X}_{2}
- remember statistical independence

$$
P(X \text { and } Y)=P(X) \times P(Y)
$$

- same idea here
\qquad

HOMOGENEITY OF VARIANCE

- to carry out hypothesis testing we need to calculate standard error
- to get standard error we need to estimate (or know) the standard deviation
- since we sample two groups, we need a pooled estimate of σ^{2}
- to get a pooled estimate we need to be certain that

$$
\sigma_{1}^{2}=\sigma_{2}^{2}
$$

- note this is a statement about the populations we would not expect the sample variances to be identical

INDEPENDENCE

- in practice this means we need to be careful about how we sample
- if comparing treatments, randomly divide a random sample into an experimental group and a control group
- Thus, even if you hope your new treatment will save lives, you have to have one group of patients without the treatment (maybe even a "sham" treatment).
- It seems cruel, but you cannot assume the treatment works, you have to demonstrate it.
- take random samples from each population (no overlap, so no risk of dependence)
- avoid situations like repeating subjects:
- e.g., comparing depression for the same subjects before and after treatment
- there are ways to test this situation, but not with these techniques

HYPOTHESIS TESTING

- we want to compare population means from two populations
- we have
- $H_{0}: \mu_{1}=\mu_{2}$
- $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$
- Independent samples of size n_{1} and n_{2}
- although we draw two random samples (one from each population), we are only interested in one statistic

$$
\bar{X}_{1}-\bar{X}_{2}
$$

- but we need to know the sampling distribution for this statistic

SAMPLING DISTRIBUTION OF DIFFERENCES

－it turns out that the sampling distribution is familiar
－Shape：As sample sizes get large，distribution becomes normal．
－Central tendency：The mean of the sampling distribution equals $\mu_{1}-\mu_{2}$ ．
－Variability：The standard deviation of the sampling distribution （standard error of the difference between means）is

$$
\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

－We have to estimate σ from our data
－our estimate is called the pooled estimate because we use scores from both samples

FORMULAS

－deviation formula

$$
s^{2}=\frac{\Sigma\left(X_{i 1}-\bar{X}_{1}\right)^{2}+\Sigma\left(X_{i 2}-\bar{X}_{2}\right)^{2}}{n_{1}+n_{2}-2}
$$

－deviations relative to the sample mean of each sample！
－raw score form：

$$
s^{2}=\frac{\left[\Sigma X_{i 1}^{2}-\left(\Sigma X_{i 1}\right)^{2} / n_{1}\right]+\left[\Sigma X_{i 2}^{2}-\left(\Sigma X_{i 2}\right)^{2} / n_{2}\right]}{n_{1}+n_{2}-2}
$$

－$X_{i 1}$ refers to the i th score from sample 1
－$X_{i 2}$ refers to the i th score from sample 2
－n_{1} refers to the number of scores in sample 1
－n_{2} refers to the number of scores in sample 2

FORMULAS

－variances

$$
s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

－where
－s_{1}^{2} is the variance among scores in sample 1
－s_{2}^{2} is the variance among scores in sample 2

STANDARD ERROR

－we use the pooled s to calculate an estimate of standard error for the sampling distribution of differences

$$
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

－this gives us an estimate of the standard deviation of the sampling distribution of the difference of sample means
－we need to know one more thing

- we have two samples with (possibly) different numbers of scores
- the degrees of freedom in sample 1

$$
\mathrm{df}=n_{1}-1
$$

- from sample 2

$$
\mathrm{df}=n_{2}-1
$$

- added together gives the result (depends on independence!)

$$
\mathrm{df}=n_{1}+n_{2}-2
$$

- (same as in denominator of standard deviation estimate)

EXAMPLE

- A neurosurgeon believes that lesions in a particular area of the brain, called the thalamus, will decrease pain perception. If so, this could be important in the treatment of terminal illness accompanied by intense pain. As a first attempt to test this hypothesis, he conducts an experiment in which 16 rats are randomly divided into two groups of 8 each. Animals in the experimental group receive a small lesion in the part of the thalamus thought to be involved in pain perception. Animals in the control group receive a comparable lesion in a brain area believed to be unrelated to pain. Two weeks after surgery each animal is given a brief electrical shock to the paws. The shock is administered with a very low intensity level and increased until the animal first flinches. In this manner, the pain threshold to electric shock is determined for each rat. The following data are obtained. Each score represents the current level (milliamperes) at which flinching is first observed. The higher the current level, the higher is the pain threshold.
- now we have everything we need to apply the techniques of hypothesis testing
(1) State the hypothesis and the criterion.
(2) Compute the test statistic.
(3) Compute the p-value.
(4) Make a decision.

HYPOTHESIS

- Step 1. State the hypotheses and the criterion.
- Directional hypothesis because we expect the lesion will increase the threshold.

$$
H_{0}: \mu_{1}=\mu_{2} \text { or } \mu_{1}-\mu_{2}=0
$$

- (lesion makes no difference)

$$
H_{a}: \mu_{1}<\mu_{2} \text { or } \mu_{1}-\mu_{2}<0
$$

- (lesion increases pain threshold, less sensitivity)
- we will set $\alpha=0.05$ for a one-tailed test
- We expect a negative t value (see H_{a})

DATA

- now we consider the data from the experiment. The researcher gets the following

Control Group (False lesion) X_{1}	Experimental Group (Thalamic lesion) X_{2}
0.8	1.9
0.7	1.8
1.2	1.6
0.5	1.2
0.4	1.0
0.9	0.9
1.4	1.7
1.1	0.7

COMPUTING THE TEST STATISTIC

$$
\begin{gathered}
\text { Test statistic }=\frac{\text { Statistic }- \text { Parameter }}{\text { Standard Error of the Statistic }} \\
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s_{\bar{X}_{1}}-\bar{X}_{2}} \\
t=\frac{(0.875-1.3625)-0}{0.2015}=-2.419
\end{gathered}
$$

- Step 3. Compute the p-value.
- we need to calculate the degrees of freedom

$$
\mathrm{df}=n_{1}+n_{2}-2=16-2=14
$$

- We use the t Distribution Calculator to compute

$$
p=0.015
$$

COMPUTING TEST STATISTIC

- Step 2. we have $n_{1}=8, n_{2}=8$
- from the data we calculate

$$
\begin{gathered}
\bar{X}_{1}=0.875 \\
\bar{X}_{2}=1.3625 \\
\bar{X}_{1}-\bar{X}_{2}=-0.4875 \\
s^{2}=0.403
\end{gathered}
$$

- (using any formula you want), so that the estimate of standard error is

$$
\begin{gathered}
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{0.403\left(\frac{1}{8}+\frac{1}{8}\right)}=0.2015
\end{gathered}
$$

INTERPRET RESULTS

- Step 4. Make a decision.
- our interpretation of the test is that the difference between the calculated sample means, or a even bigger difference, would have occurred by chance less than 5% of the time if the null hypothesis were true
- in practice, this means that the study supports the theory that lesions to the thalamus decrease pain perception
- significant result
- This means you have support for the idea that the surgery did affect pain perception

CONFIDENCE INTERVAL

－Basic formula for all confidence intervals：

$$
C l=\text { statistic } \pm \text { (critical value)(standard error) }
$$

－for a difference of sample means

$$
C I=\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{c v} s_{\bar{X}_{1}-\bar{X}_{2}}
$$

－We already have most of the terms（we get $t_{c v}$ from the Inverse t－distribution calculator，so

$$
\begin{gathered}
C l_{95}=(0.875-1.3625) \pm(2.1448)(0.2015) \\
C l_{95}=(-0.9197,-0.0553)
\end{gathered}
$$

ONLINE CALCULATOR

－You need to understand how to pull out the information you want

Test summary	
Type of test	Standard
Null hypothesis	$H_{0}: \mu_{1}-\mu_{2}=0$
Alternative hypothesis	$H_{a}: \mu_{1}-\mu_{2}<0$
Type I error rate	$\alpha=0.05$
Label for group 1	Control
Sample size 1	$n_{1}=8$
Sample mean 1	$\bar{X}_{1}=0.8750$
Sample standard deviation 1	$s_{1}=0.345378$
Label for group 2	Experimental
Sample size 2	$n_{2}=8$
Sample mean 2	$\bar{X}_{2}=1.3625$
Sample standard deviation 2	$s_{2}=0.453360$
Pooled standard deviation	$s=0.403002$
Sample standard error	$s_{\bar{X}_{1}-\bar{X}_{2}}=0.201501$
Test statistic	$t=-2.419342$
Degrees of fredom	$d f=14$
p value	$p=0.014873$
Decision	Reject the null hypothesis
Confidence interval critical value $t_{c v}=2.144787$	
Confidence interval	$\mathrm{Cl}_{95}=(-0.919677,-0.055323)$

ONLINE CALCULATOR

－The calculations are not complicated，but it is usually better to use a computer．You have to properly format the data．

Enter data：

```
Sample size for group 1 1 n}=
Sample mean for group 1 }\mp@subsup{\overline{X}}{1}{}=0.87
Sample standard deviation for group 1s
Sample size for group 2n2=8
```

$$
\begin{aligned}
& \text { anfor foun }, ~ \\
& \text { PSY 201: Statistics in } \\
& \\
& \text { Psycholog }
\end{aligned}
$$

ASSUMPTIONS

－The t－test that we use for hypothesis tests of means is based on three key assumptions
－The population distributions are normally distributed．Matters for small sample sizes．
－Independent scores．For a two－sample t－test，the scores are uncorrelated between populations．（We deal with this case soon．）
－Homogeneity of variance．For a two－sample t－test，the populations have the same variance（or standard deviation）．
－If these assumptions do not hold，then the t－distribution that we calculate is not an accurate description of the sampling distribution．

HOMOGENEITY OF VARIANCE

－Deviation from normal distributions for the populations does not matter very much，especially for large samples．If we run many tests， we see the Type I error rate pretty close to what is intended by setting α（e．g．，$\alpha=0.05$ ）
－Show in Robustness Simulation Demonstration in the textbook（12．4）
－This is true for varying sample sizes deviation of the population
－to get a pooled estimate we need to be certain that

$$
\sigma_{1}^{2}=\sigma_{2}^{2}
$$

－to carry out hypothesis testing we need to calculate standard error
－to get standard error we need to estimate（or know）the standard
－since we sample two groups，we used a pooled estimate of σ^{2}
－we need consider what happens when homogeneity does not hold

ROBUSTNESS？

－For a two－sample t－test，if $n_{1}=n_{2}$ ，then having $\sigma_{1}^{2} \neq \sigma_{2}^{2}$ does not matter very much．
－If we run many tests，we see the Type I error rate pretty close to what is intended by setting α（e．g．，$\alpha=0.05$ ），especially for larger sample sizes
－Show in Robustness Simulation Demonstration in the textbook（12．4）
－Shape of the population distributions does not matter very much．

ROBUSTNESS？

－For a two－sample t－test，if $n_{1} \neq n_{2}$ ，then having $\sigma_{1}^{2} \neq \sigma_{2}^{2}$ matters a lot．
－If we run many tests，we see the Type I error rate is much different than what is intended by setting α（e．g．，$\alpha=0.05$ ）
－Type I error rate is around 37% if big σ^{2} is paired with small n
－Type I error rate is around 0.2% if big σ^{2} is paired with big n
－Show in Robustness Simulation Demonstration in the textbook（12．4）
－Shape of the population distributions does not matter very much．

HOMOGENEITY OF VARIANCE

－Our concern is about population variances $\left(\sigma_{1}^{2}\right.$ and $\left.\sigma_{2}^{2}\right)$ not about sample variances（ s_{1}^{2} and s_{2}^{2} ）
－It is possible to do a hypothesis test for variances

$$
\begin{aligned}
& H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \\
& H_{a}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{aligned}
$$

－Note，it would be nice if we did not reject H_{0} ，because then we could use our original method
－if we reject H_{0} ，we must make some adjustments to hypothesis testing for the means

HOMOGENEITY OF VARIANCE

－We are not actually going to do the hypothesis test for homogeneity of variance
－It is messy and（a bit）confusing
－Just remember：
－If the sample sizes are equal，then you are fine with the standard method．
－If the sample sizes are unequal，then you might want to worry about homogeneity of variance．If $s_{1}^{2} \approx s_{2}^{2}$ ，then you are probably also fine
－If you think you do not have homogeneity of variance，then you can run a revised version of the test（next time）．Some people（including your textbook）recommend this as the default approach．

CONCLUSIONS

－comparing two means
－independent samples
－more flexible than one－sample case
－many more experiments can be tested
－same basic technique
－Welch＇s test
－Power
Planning a replication study

TESTING MEANS

PSY 201: Statistics in Psychology
Lecture 26
Hypothesis testing for two means
Planning a replication study.

Greg Francis
Purdue University
Fall 2023

- we want to test

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{a}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

- but the techniques of last time require $\sigma_{1}^{2}=\sigma_{2}^{2}$
- pooled estimate of variance

$$
s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

$$
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

- and use the t-distribution

REVISED TESTING MEANS

- when

$$
\sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

- we must make two changes
- different estimate of standard error of the difference $s_{\bar{X}_{1}}-\bar{X}_{2}$
- adjustment of degrees of freedom
- still use the t distribution

$$
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)}
$$

- or

$$
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{s_{\bar{X}_{1}}^{2}+s_{\bar{X}_{2}}^{2}}
$$

DEGREES OF FREEDOM

- when $\sigma_{1}^{2} \neq \sigma_{2}^{2}$ we calculate $d f$ as:

$$
d f=\frac{\left(s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}\right)^{2}}{\left(s_{1}^{2} / n_{1}\right)^{2} /\left(n_{1}-1\right)+\left(s_{2}^{2} / n_{2}\right)^{2} /\left(n_{2}-1\right)}
$$

- or

$$
d f=\frac{\left(s_{X_{1}}^{2}+s_{X_{2}}^{2}\right)^{2}}{\left(s_{X_{1}}^{2}\right)^{2} /\left(n_{1}-1\right)+\left(s_{X_{2}}^{2}\right)^{2} /\left(n_{2}-1\right)}
$$

- looks (and is) messy
- just a matter of plugging in numbers carefully
- still use the t-test as before!
- We call it Welch's test
- A researcher wants to know if single or married parents are more satisfied with their status. She randomly samples 61 single and 161 married parents. Each parent rates her/his marital status satisfaction, with higher scores indicating greater satisfaction. The researcher wants to know if there is a difference between the population means of single versus married parents.
- data summary

Variable	n	\bar{X}	s	$s_{\bar{X}}$
Group 1	61	2.6557	0.602	0.077
Group 2	161	2.7516	0.461	0.036

WORRY ABOUT HOMOGENEITY

- We do not know the true values of σ_{1} and σ_{2}, but we notice that $n_{1}<n_{2}$ and that $s_{1}>s_{2}$.
- This makes us worry that maybe our Type I error rate will be off (and maybe too big), so we use Welch's t-test
- The online calculator in the textbook uses Welch's test unless $n_{1}=n_{2}$

$$
H_{0}: \mu_{1}-\mu_{2}=0
$$

- indicating there is no difference in satisfaction between the two groups

$$
H_{a}: \mu_{1}-\mu_{2} \neq 0
$$

- indicating there is a difference in satisfaction between the two groups
- not an ordered hypothesis because we do not know who might be more satisfied
- level of significance is set at $\alpha=0.05$

TEST STATISTIC

- pooled standard error estimate

$$
\begin{gathered}
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)} \\
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\left(\frac{(0.602)^{2}}{61}+\frac{(0.461)^{2}}{161}\right)} \\
s_{\bar{X}_{1}-\bar{X}_{2}}=0.075683
\end{gathered}
$$

－the formula for the test statistic is

$$
\text { Test statistic }=\frac{\text { Statistic }- \text { Parameter }}{\text { Standard Error }}
$$

－or
－or

$$
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s_{\bar{X}_{1}-\bar{X}_{2}}}
$$

$$
t=\frac{(2.6557-2.75162)-(0)}{0.075683}=-1.267
$$

p VALUE

－From the t－distribution calculator，we find（for a two－tailed test with $d f=87.995)$ that

$$
p=0.208455>\alpha=0.05
$$

－we do not reject H_{0}
－there is no evidence that satisfaction with marital status differs for married versus single parents
－the probability that the observed（or more extreme）difference in means would occur by chance if $\mu_{1}-\mu_{2}=0$ is greater than 0.05

TEST STATISTIC

－adjusted degrees of freedom

$$
\begin{gathered}
d f=\frac{\left(s_{X_{1}}^{2}+s_{X_{2}}^{2}\right)^{2}}{\left(s_{X_{1}}^{2}\right)^{2} /\left(n_{1}-1\right)+\left(s_{X_{2}}^{2}\right)^{2} /\left(n_{2}-1\right)} \\
d f=\frac{\left((0.077)^{2}+(0.036)^{2}\right)^{2}}{\left((0.077)^{2}\right)^{2} /(61-1)+\left((0.036)^{2}\right)^{2} /(161-1)} \\
d f=87.995
\end{gathered}
$$

ONLINE CALCULATOR

－As always，it is best to use a computer．We can enter the summary statistics．

```
Enter data:
Sample size for group 1 1 n}=6
Sample mean for group 1 }\mp@subsup{\overline{X}}{1}{}=2.655
Sample standard deviation for group 1s 的 }=0.60
Sample size for group 2n2 =161
Sample mean for group 2 }\mp@subsup{\overline{X}}{2}{}=2.751
Sample standard deviation for group 2 2 s =0.461
Specify hypotheses:
H
Ha
\alpha=0.05
Run Test
```


ONLINE CALCULATOR

- You need to understand how to pull out the information you want

Test summary	
Type of test	Welch's Test
Null hypothesis	$H_{0}: \mu_{1}-\mu_{2}=0$
Alternative hypothesis	$H_{a}: \mu_{1}-\mu_{2} \neq 0$
Type I error rate	$\alpha=0.05$
Label for group 1	Group 1
Sample size 1	$n_{1}=61$
Sample mean 1	$\bar{X}_{1}=2.6557$
Sample standard deviation 1	$s_{1}=0.602000$
Label for group 2	Group 2
Sample size 2	$n_{2}=161$
Sample mean 2	$\bar{X}_{2}=2.7516$
Sample standard deviation 2	$s_{2}=0.461000$
Pooled standard deviation	$s=$ NA
Sample standard error	$s_{\bar{X}_{1}-\bar{X}_{2}}=0.075683$
Test statistic	$t=-1.267121$
Degrees of freedom	$d f=87.99504946388605$
p value	$p=0.208455$
Decision	Do not the reject null hypothesis
Confidence interval critical value $t_{c v}=1.987291$	
Confidence interval	$\mathrm{Cl}_{95}=(-0.246305,0.054505)$

POWER

- Power is treated much the same as for the one-sample case
- We just have to keep track of whether we are using the standard t-test or Welch's test
- The on-line calculator of our textbook does this for you automatically
- Power is very important when designing an experiment

CONFIDENCE INTERVAL

- Basic formula for all confidence intervals:

$$
C l=\text { statistic } \pm(\text { critical value })(\text { standard error })
$$

- for a difference of sample means

$$
C I=\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{c v}{\overline{X_{1}}-\bar{X}_{2}}
$$

- We already have most of the terms (we get $t_{c v}$ from the Inverse t-distribution calculator, so

$$
\begin{gathered}
C l_{95}=(2.6557-2.7516) \pm(1.987291)(0.075683) \\
C l_{95}=(-0.246305,0.054505)
\end{gathered}
$$

REPLICATION

- An important characteristic of science is replication
- Show that the same methods and measures produce the same results
- "Hard" sciences are very good at this (e.g., physics, chemistry)
- Sciences that depend on statistics face challenges
- We always face a risk of making a Type I or a Type II error
- Thus, successful replication is not expected even for real effects
- You can mitigate these problems by designing good replication studies that use the same methods, but have high power

INTERESTING STUDY

－Consider a study on how nonconformity can induce higher status in certain environments
－Participants were 52 shop assistants working in downtown Milan，Italy boutiques（Armani，Burberry，Christian Dior，La Perla，Les Copains， and Valentino）
－Two groups of 26 each read a vignette：
－Imagine that a woman is entering a luxury boutique in downtown Milan during summer．She looks approximately 35 years old．
－Nonconforming condition（Group 1）：She is wearing plastic flip－flops and she has a Swatch on her wrist
－Conforming condition（Group 2）：She is wearing sandals with heels and she has a Rolex on her wrist．
－Rate the status of the woman on a scale of 1－7（bigger means higher status）

REPLICATION

－You want to repeat the study，but it is not easy to get shop assistants from high end stores（you might have to go to Chicago for your subjects）
－The online power calculator requires you to enter estimates of：

$$
\begin{gathered}
H_{0}: \mu_{1}-\mu_{2}=0 \\
H_{0}: \mu_{a 1}-\mu_{\mathrm{a} 2} \approx \bar{X}_{1}-\bar{X}_{2}=0.6 \\
\sigma_{1}, \sigma_{2}
\end{gathered}
$$

INTERESTING STUDY
－The results are：
－Nonconforming

$$
\bar{X}_{1}=4.8
$$

－Conforming

$$
\begin{gathered}
\bar{X}_{2}=4.2 \\
t(50)=2.1 \\
p=0.0408
\end{gathered}
$$

REPLICATION

－Oftentimes researchers just use the same sample size as a previous study．After all，that study worked，so it must be an appropriate sample size，right？
－No，if we use $n_{1}=n_{2}=26$ ，the on－line power calculator gives power $=0.5397$

－this should make sense because the $p=0.04$ in the original study is just below the $\alpha=0.05$ criterion
－if we take a different random sample，we will get a different p value， almost half the time it will be bigger than α

EFFECT SIZE

－The power calculator computes a term called δ ．This is an estimate of d^{\prime} between the null and specific alternative distributions．Bigger values of δ mean it is easier to notice a difference．It can be computed from the means and standard deviation estimates that you provide to the power calculator．
－An estimate，d ，can also be computed from the t value and sample sizes

$$
d=t \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=(2.1) \sqrt{\frac{1}{26}+\frac{1}{26}}=0.5824
$$

－Often called Cohen＇s d

REPLICATION

－Suppose you want 80% power
－The calculator tells you that you need $n_{1}=n_{2}=48$ participants．
Nearly twice as big as the original study！

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& \boldsymbol{H}_{a}: \mu_{a 1}-\mu_{a 2}=0.6 \\
& \sigma_{1}=1.0301 \\
& \sigma_{2}=1.0301 \\
& \text { Or enter a standardized effect size } \\
& \frac{\left(\mu_{\mu_{1}}-\mu_{a 2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma}=\delta=0.5824677 \\
& \text { Specify the properties of the test: } \\
& \text { Type of test Two-tails : } \\
& \text { Type I error rate, } \alpha=0.05 \\
& \text { Sample size for group } 1, n_{1}=4 \\
& \text { Calculate minimum sample size }
\end{aligned}
$$

－if you do the replication correctly，you typically run a better study than the original
－That is common in science，where new experiments are better than old experiments

EFFECT SIZE

－You might worry that the effect size of the original study is an overestimate
－After all，if the researchers had not found a significant difference，they might not have published their paper（publication bias）
－A conservative approach is to divide the estimated effect size half， and do the power calculation from that new effect size．
－Thus，we can directly enter：

$$
\delta=\frac{d}{2}=\frac{0.5824}{2}=0.2912
$$

－The power calculator now tells us that to have 80% power，we need $n_{1}=n_{2}=187$ subjects
－This could be a very difficult experiment to run

CONCLUSIONS

- Welch's test
- Power
- Replication
- hypothesis testing for dependent samples
- sampling distribution
- standard error

Within is better than between.

DEPENDENT SAMPLES

PSY 201: Statistics in Psychology
Lecture 27
Hypothesis testing for dependent sample means
Within is better than between.

Greg Francis

Purdue University
Fall 2023

- two samples of data are dependent when each score in one sample is paired with a specific score in the other sample
- e.g
- testing the same set of subjects before and after treatment
- matched subjects in two groups (match along IQ before treatment and test mathematics)

CORRELATED DATA

- when samples are dependent, the scores across samples may be correlated
- suggests that you can (partly) predict one from other
- removes some of the randomness from the samples
- generally a good thing (more control over variables)
- but requires slightly different analysis

HYPOTHESIS

- we can calculate the mean of the difference scores for the sample

$$
\bar{d}=\frac{\Sigma d_{i}}{n}
$$

- which is the same as

$$
\bar{d}=\bar{X}_{1}-\bar{X}_{2}
$$

- we would like to know if the mean of difference scores for the population $\left(\mu_{1}-\mu_{2}\right)$ is different from zero

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{a}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

- This is actually the same as a one-sample t test!

VARIABLE

- the variable of interest for dependent groups is the difference scores

$$
d_{i}=X_{1 i}-X_{2 i}
$$

- where
- the i th scores in each group are matched (same subject)
- $X_{1 i}$ is the i th score in the first group
- $X_{2 i}$ is the i th score in the second group
- note that for dependent groups $n_{1}=n_{2}=n$, so we can calculate n difference scores

STANDARD ERROR

- we estimate the standard error with

$$
s_{\bar{d}}=\frac{s_{d}}{\sqrt{n}}
$$

- where s_{d} is the standard deviation of the difference scores

$$
s_{d}=\sqrt{\frac{\sum\left(d_{i}-\bar{d}\right)^{2}}{n-1}}
$$

- or in raw score form

$$
s_{d}=\sqrt{\frac{\sum d_{i}^{2}-\left(\sum d_{i}\right)^{2} / n}{n-1}}
$$

- the test statistic is the same in form as all those before

$$
\text { Test statistic }=\frac{\text { Statistic }- \text { Parameter }}{\text { Standard Error }}
$$

- for our specific situation it is

$$
t=\frac{\bar{d}-\left(\mu_{1}-\mu_{2}\right)}{s_{\bar{d}}}
$$

- which is used to compute a p-value in a t-distribution with $n-1$ degrees of freedom

EXAMPLE

- the measurements are dependent because if you tend to have a high pulse rate, it will be high for both measurements
- but we are interested in the difference, so the overall rate is unimportant
- calculate the difference of your pulse rates

$$
d_{i}=X_{1 i}-X_{2 i}
$$

- do your thoughts control your autonomic processes?
- relax and take your pulse for 30 seconds
- write the number down $\left(X_{1}\right)$
- picture yourself running and then take your pulse for 30 seconds
- write the number down $\left(X_{2}\right)$
- we want to know if the mean difference across the two measurements (samples) is different from zero

HYPOTHESIS

- (1) our null hypothesis is that there is no effect of imagination on pulse rate

$$
H_{0}: \mu_{1}-\mu_{2}=0
$$

- the alternative hypothesis is that there is an effect

$$
H_{a}: \mu_{1}-\mu_{2}<0
$$

- note, this is a directional hypothesis because we suspect that thinking about exercise should increase heart rate
- we will use a level of significance of $\alpha=0.05$

DATA

- take a sample of pulse rate differences from ten people
- with your sampled data calculate the sample mean

$$
\bar{d}=\frac{\sum d_{i}}{10}
$$

- and the sample standard deviation (you can use the on-line calculator)

$$
s_{d}=\sqrt{\frac{\sum d_{i}^{2}-\left(\Sigma d_{i}\right)^{2} / 10}{9}}
$$

- and the estimate of the standard error

$$
s_{\bar{d}}=\frac{s_{d}}{\sqrt{10}}
$$

p VALUE

- (3) You can compute the corresponding p-value with the t-Distribution Calculator for a one-tailed test
- with your sample of 10 people you have

$$
d f=n-1=9
$$

- if

$$
p<\alpha=0.05
$$

- you reject H_{0}

TEST STATISTIC

- (2) now calculate the test statistic as

$$
t=\frac{\bar{d}-\left(\mu_{1}-\mu_{2}\right)}{s_{\bar{d}}}
$$

- since we assume $\mu_{1}-\mu_{2}=0$ this is

$$
t=\frac{\bar{d}}{s_{\bar{d}}}
$$

DECISION

- (4) if you reject H_{0} that means there is evidence that imagination of exercise does affect heart rate
- if you do not reject H_{0} that means there is no evidence that imagination of exercise affects heart rate
- if you reject, that means that if $\mu_{1}-\mu_{2}=0$, then the probability of the observed (or a more extreme) sample mean \bar{d} value is less than 0.05

SIGNIFICANCE VS. IMPORTANCE

- if you failed to reject H_{0}, it may have been because you had too small a sample, n,
- or may have been because there was no real difference
- in principle, it is hard to believe that imagined running has no effect at all on pulse rate
- Surely the brain uses energy differently during imagined running compared to not
- the effect might be very small, so small that our experiment cannot find it

SIGNIFICANCE VS. IMPORTANCE

- on the other hand
- probably everyone had a sample difference \bar{d} that was non-zero
- but some people probably did not reject H_{0}
- we cannot just look at numbers like \bar{d} and take them at face value
- the statistical procedures keep us from rushing to conclusions that are unwarranted

POWER

- The computation of power is very similar (actually, identical) to the one-sample t-test situation
- Consider the STATLAB Horizontal-Vertical illusion. Across the class, we have data from 26 students that reports the mean (for each student) matching length for a horizontal and a vertical line.

$$
\text { Trials to go: } 29
$$

POWER

- Suppose you want to test for a difference between matching lengths for a horizontal and vertical line.

$$
H_{0}: \mu_{1}-\mu_{2}=0
$$

- How many subjects should you use to have 90% power?
- We can use the STATLAB data to estimate power and then compute an appropriate sample size
- From the STATLAB data we find:

$$
\begin{gathered}
\bar{X}_{1}-\bar{X}_{2}=99.3213-105.6313=-6.31 \\
s_{d}=4.655993
\end{gathered}
$$

ONLINE CALCULATOR

Specify the population characteristics:
$H_{0}: \mu_{1}-\mu_{2}=0$
$H_{a}: \mu_{a 1}-\mu_{a 2}=-6 .{ }^{3}$
Enter the standard deviation of each
population and the correlation between
scores...
$\sigma_{1}=\mathrm{NA}$
$\sigma_{2}=\mathrm{NA}$
Population correlation: $\rho=\mathrm{NA}$
...or enter the standard deviation of difference
scores:
scores:
$\begin{aligned} & \sigma_{d} \\ & \text { Or enter a standardized effect size: }\end{aligned}$
$\frac{\left(\mu_{a^{\prime} 1}-\mu_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma_{d}}=\delta=-1.355268$
Specify the properties of the test:
Type of test Two-tails ©
Type I error rate, $\alpha=0.05$
Sample size (pairs of scores) $n=0.9$
Calculate minimum sample size
Calculate power

ONLINE CALCULATOR

- You get exactly the same numbers using the one-sample calculator:

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& H_{0}: \mu_{0}=0 \\
& H_{a}: \mu_{a}=-6.31 \\
& \sigma=4.6560 \\
& \text { Or enter a standardized effect size } \\
& \frac{\mu_{-}-\mu_{0}}{\sigma}=\delta=-1.355240 \\
& \text { Specify the properties of the test: } \\
& \text { Type of test Two-talls } \\
& \text { Type I error rate, } \alpha=0.05 \\
& \text { Power= } 0.9 \\
& \text { Sample size, } n=8 \\
& \text { Calculate minimum sample size } \\
& \text { Calculate power }
\end{aligned}
$$

ONLINE CALCULATOR

- Instead of using s_{d} (the standard deviation of the differences), you could use the standard deviation of each group and the correlation between scores:

```
Specify the population characteristics:
    H
    Ha}:\mp@subsup{\mu}{a1}{}-\mp@subsup{\mu}{a2}{}=-6.3
Enter the standard deviation of each
    l
        \sigma}=3.550
        o
    Population correlation: }\rho=0.707
    ...or enter the standard deviation of difference
    core
    Or enter a standardized effect size:
    |}\frac{(\mp@subsup{\mu}{a}{}-\mp@subsup{\mu}{a}{2})-(\mp@subsup{\mu}{1}{}-\mp@subsup{\mu}{2}{})}{\mp@subsup{\sigma}{d}{}}=\delta=-1.35523
Specify the properties of the test:
            Type of test Two-talls ©
        Type I error rate, }\alpha=0.0
        Power= 0.9
    Sample size (pairs of scores) n=8
    Calculatem minimum sample size
```


INDEPENDENT TEST

- Suppose you wanted to do the experiment with different subjects assigned to different line orientations. How many subjects do you need?
- Independent Means Power Calculator

- 4 times as many subjects for an independent means experiment!
－A within subjects（dependent test）design is usually more powerful than a between subjects（independent test）
－This is because you are able to remove one source of variability from the standard error
－The variability in overall score values
－Standard error reflects variability between conditions
－A between subjects calculation of variability includes variability between conditions and variability across subjects（more variability！）
－dependent samples
－very important for lots of interesting tests
－more powerful than independent tests

NEXT TIME

－two－sample case for independent proportions
－hypothesis testing
－confidence interval
－power
What is a＂margin of error＂？

PSY 201：Statistics in Psychology
Lecture 28
Hypothesis testing for independent proportions
What is a＂margin of error＂？
Greg Francis
Purdue University

Fall 2023

PROPORTIONS

－we want to test hypotheses about proportions of populations

$$
\begin{aligned}
& H_{0}: P_{1}=P_{2} \\
& H_{a}: P_{1} \neq P_{2}
\end{aligned}
$$

－or，the same thing is

$$
\begin{aligned}
& H_{0}: P_{1}-P_{2}=0 \\
& H_{a}: P_{1}-P_{2} \neq 0
\end{aligned}
$$

－（or we could use directional hypotheses）

STANDARD ERROR

－the standard error of the difference between independent proportions is

$$
s_{p_{1}-p_{2}}=\sqrt{p q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

－where p is the average proportion across the groups

$$
p=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}
$$

－or an equivalent formula is

$$
p=\frac{f_{1}+f_{2}}{n_{1}+n_{2}}
$$

－with f_{1} and f_{2} being the frequencies of occurrences in each sample， respectively．
－Also

$$
q=1-p
$$

SAMPLING DISTRIBUTION

－the statistic is the difference between two independent sample proportions

$$
p_{1}-p_{2}
$$

－need to know sampling distribution and standard error
－turns out that for large sample sizes（and some constraints on the proportions），the sampling distribution is approximately normal with a mean equal to the difference of population proportions

$$
P_{1}-P_{2}
$$

INDEPENDENT SAMPLES

－we now have everything we need to carry out hypothesis testing of proportions for the two－sample case when the samples are independent
－That is we can calculate the test statistic

$$
z=\frac{\left(p_{1}-p_{2}\right)-\left(P_{1}-P_{2}\right)}{s_{p_{1}-p_{2}}}
$$

－when $H_{0}: P_{1}-P_{2}=0$ this is simply

$$
z=\frac{\left(p_{1}-p_{2}\right)}{s_{p_{1}-p_{2}}}
$$

－and look up a p－value with the normal distribution calculator

CONFIDENCE INTERVALS

- we can create confidence intervals too
- the general formula is

$$
C I=\text { statistic } \pm(\text { critical value }) \times(\text { standard error })
$$

- for the difference of proportions it becomes

$$
C I=\left(p_{1}-p_{2}\right) \pm\left(z_{C v}\right)\left(s_{p_{1}-p_{2}}\right)
$$

FOOTBALL

- Is the sex difference a real difference between populations?
- (1) State the hypothesis.

$$
\begin{aligned}
& H_{0}: P_{1}-P_{2}=0 \\
& H_{a}: P_{1}-P_{2} \neq 0
\end{aligned}
$$

- Set the criterion
- we'll use $\alpha=0.01$

AN EXAMPLE

- A Gallup poll sampled 1005 adults and asked, "Are you a fan of college football, or not?"

Men much more likely
than women to be
college football fans.
± 3 \% Margin of Error October 21-24, 1999 Sample Size=1,005

$\square \mathrm{Yes}$
$\square \mathrm{No}$
\square Don't know

Men

FOOTBALL

- (2) Find the test statistic
- We are interested in the proportion of people who answer "yes" to the question.
- We really need to know n_{1} and n_{2}, but we do not have that information. We'll assume $n_{1}=502$ and $n_{2}=503$, for males and females, respectively.
- We need p, the average proportion across the groups,

$$
p=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}=\frac{(502)(0.45)+(503)(0.28)}{1005}=0.364
$$

- and q

$$
q=1-p=1-0.364=0.636
$$

FOOTBALL

－we use p and q to get standard error

$$
\begin{gathered}
s_{p_{1}-p_{2}}=\sqrt{p q\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
=\sqrt{(0.364)(0.636)\left(\frac{1}{502}+\frac{1}{503}\right)}=0.03035
\end{gathered}
$$

－and can now compute the test statistic

$$
\begin{gathered}
z=\frac{\left(p_{1}-p_{2}\right)-\left(P_{1}-P_{2}\right)}{s_{p_{1}-p_{2}}} \\
z=\frac{(0.45-0.28)-0}{0.03035}=5.6013
\end{gathered}
$$

－（3）Find the p－value from the normal distribution calculator

$$
p \approx 0
$$

FOOTBALL

－（4）Make a decision
－Reject H_{0} ．The samples suggest that men and women have different proportions of being fans of college football

Men much more likely
than women to be
college football fans．$\quad \pm 3$ \％Margin of Error October 21－24， 1999 Sample Size＝1，005

\square Yes
\square No
\％
\square Don＇t know

FOOTBALL

－note，we take a sample of 1005 people，and we draw conclusions about everyone in the US
－that is remarkable，and it works because we know the properties of the sampling distribution
－of course，our conclusion could be wrong．There is a chance， $\alpha<0.01$ ，that even if H_{0} were true that we would get a difference of sample proportions like this．

FOOTBALL

FOOTBALL

- what's that margin of error about?
- You see in lots of polls that there is a "margin of error of $\pm 3 \%$ " (or $\pm 5 \%, \ldots$)
- It's the range of a confidence interval

$$
\begin{gathered}
C I=\left(p_{1}-p_{2}\right) \pm\left(z_{c v}\right)\left(s_{p_{1}-p_{2}}\right) \\
C l_{99}=(0.45-0.28) \pm(2.576)(0.03035) \\
C l_{99}=(0.45-0.28) \pm 0.07818
\end{gathered}
$$

- going 0.08 (or 8%) above and below the difference of the sample proportions
- where does 3% come from?

MARGIN OF ERROR

- In this particular case, the Gallup organization seems to be reporting the \pm range of a 95% confidence interval for the proportion of the entire set of data, under the worst case (when s_{p} is as big as it possibly could be)

$$
\begin{aligned}
& C l=p \pm\left(z_{c v}\right)\left(s_{p}\right) \\
& s_{p}=\sqrt{\frac{p(1-p)}{n}}
\end{aligned}
$$

- is biggest for $p=0.5$
- with $n=1005$

$$
s_{p}=\sqrt{\frac{0.5(0.5)}{1005}}=0.01577
$$

- for a $95 \% \mathrm{Cl}$,

$$
z_{c v}=1.96
$$

- so

$$
C l_{95}=p \pm(1.96)(0.01577)=p \pm 0.03091
$$

POWER

- This study is rather old (1999). You might decide to check whether there are similar results today. To design a new experiment, you can use the previous data as estimates of the population proportions
Specify the population characteristics:
$H_{0}: P_{1}-P_{2}=0$
$H_{a}: P_{a 1}=0.45 \quad P_{a 2}=0.28$
Specify the properties of the test:
Type of test Two-tails
Type I error rate, $\alpha=0.01$
Power= 0.9
Calculate minimum sample size
Sample size for group $1, n_{1}=239$
Sample size for group 2, $n_{2}=239$
Calculate power

POWER

- You have to think carefully about what you are going to compare. For example, rather than repeat the same experiment for people in 2018, you might be interested in checking whether the proportion of women who like college football has changed since 1999:

$$
H_{0}: P_{1}-P_{2}=0
$$

- That would be a different experiment, and thus it requires a different power analysis.

POWER

- For example, maybe an advertiser is willing to reconsider placing ads targeted to women during college football games, provided the proportion has increased by at least 0.1 since 1999.
- Then, our specific values for the alternative hypothesis are:

$$
H_{a}: P_{\mathrm{a} 1}=0.28, P_{\mathrm{a} 2}=0.38
$$

- If we use the same sample sizes as the 1999 study $\left(n_{1}=502\right.$,
$n_{2}=502$)
Specify the population characteristics:
$H_{0}: P_{1}-P_{2}=0$
$H_{a}: P_{a 1}=\quad P_{a 2}=0.28 \quad 0.38$
Specify the properties of the test:

> Type of test Two-t

$$
\text { Type I error rate, } \alpha=0.01
$$

Power $=0.786136 \pi$
Calculate minimum sample size
Sample size for group 1, $n_{1}=502$
Sample size for group $2, n_{2}=502 \quad$ Calculate power

- To have 90% power for this study, we can find the minimum sample size

- but this does not help us much, as the sample from 1999 is fixed at $n_{1}=502$.

POWER

CONCLUSIONS
－We can fix $n_{1}=502$ and increase the n_{2} value until we get a power of 0.9

```
Specify the population characteristics:
Ha}:\mp@subsup{P}{a1}{}=0.28\quad\mp@subsup{P}{a2}{}=0.3
Specify the properties of the test:
            Type of test Two-tails ©
            Type I error rate, }\alpha=0.0
                Power=0.900078& Calculateminimum samples size
Sample size for group 1, n}=50
Sample size for group 2, n2 = 1029 Calculate pover
```

－It takes a quite large sample to detect a 0.1 difference in proportions！
－two－sample case
－independent proportions
－confidence interval
－power

NEXT TIME

－two－sample case
－dependent proportions
－confidence interval
－power（tricky）
What do people think about death？

PSY 201：Statistics in Psychology
Lecture 29
Hypothesis testing for dependent proportions
What do people think about death？
Greg Francis
Purdue University

Fall 2023

- when the samples are not independent, hypothesis testing of proportions becomes a bit more complicated
- samples are dependent when each score in one sample is paired with a score in the other sample
- just like dependent samples for the mean, the problem is that the samples are not independent (not truly random) and we need to take that into account
- This can be a good thing from a statistical point of view
- We can remove some variability
- Testing the difference of proportions of individuals who pass each of two similar items on a test. (e.g. comparing pass/fail for two sets of students who get better than 600 SAT)
- Test the difference in proportions of individuals who support something before and after discussion.
- Comparing proportions of husbands and wives on an issue.

HYPOTHESES

- for dependent samples we set our hypotheses as

$$
\begin{aligned}
& H_{0}: P_{1}-P_{2}=0 \\
& H_{a}: P_{1}-P_{2} \neq 0
\end{aligned}
$$

SAMPLING DISTRIBUTION

- we need to know the sampling distribution and the standard error
- but first we need to design a contingency table that shows
disagreement or dissimilarity in responses

	Group 2			
	NO			
	YES			
Group	YES	A	B	$A+B$
1	NO	C	D	$C+D$
		$A+C$	$B+D$	$A+B+C+D=n$

- A is the number of scores that are "no" in group 2 and "yes" in group 1
- B is the number of scores that are "yes" in group 2 and "yes" in group 1
- C is the number of scores that are "'no" in group 2 and "no" in group 1
- D is the number of scores that are "yes" in group 2 and "no" in group 1

CONTINGENCY TABLE

- we then convert these to proportions

	Group 2			
	NO			
Group	YES	a	b	$a+b$
1	NO	c	d	$c+d$
		$a+c$	$b+d$	$a+b+c+d=1.0$

- $a=A / n$ is the proportion of scores that are "no" in group 2 and "yes" in group 1
- $b=B / n$ is the proportion of scores that are "yes" in group 2 and "yes" in group 1
- $c=C / n$ is the proportion of scores that are "'no" in group 2 and "no" in group 1
- $d=D / n$ is the proportion of scores that are "yes" in group 2 and "no" in group 1

CONTINGENCY TABLES

- the sampling distribution is approximately normal with a mean of $P_{1}-P_{2}$ if

$$
A+D>10
$$

or

$$
B+C>10
$$

- if not, do not use this test
- moreover, our estimate of standard error of the difference between dependent proportions is

$$
s_{p_{1}-p_{2}}=\sqrt{\frac{a+d}{n}}=\sqrt{\frac{p_{d}}{n}}=\sqrt{\frac{(A+D) / n}{n}}
$$

- which we get from the contingency table

PROPORTIONS

- from the contingency table we can get the proportions of scores with the trait we are interested in
- this is what we need for our statistic

$$
\begin{aligned}
& p_{1}=b+d=\frac{B+D}{n} \\
& p_{2}=a+b=\frac{A+B}{n}
\end{aligned}
$$

- but we need the contingency table for other reasons!

HYPOTHESIS TESTING

- so to actually carry out the test, we compute the test statistic

$$
z=\frac{\left(p_{1}-p_{2}\right)-\left(P_{1}-P_{2}\right)}{s_{p_{1}-p_{2}}}
$$

- or, since our null hypothesis is that $\left(P_{1}-P_{2}\right)=0$

$$
z=\frac{\left(p_{1}-p_{2}\right)}{s_{p_{1}-p_{2}}}
$$

- and then look up a p-value from the normal distribution calculator

EXAMPLE

－I took the Exam 1 grades and the Homework grades and for each student computed：
－Trait 1：Grade on Exam 1 is ≥ 70（C range）
－Trait 2：Grade on Homework is ≥ 70（C range）

ANOTHER EXAMPLE

－Suppose we want to know if there is a difference in the proportion of students that oppose the death penalty and the proportion of students that support gun control．
－Raise your hand if（feel free to lie if you do not want others to know your true opinions）
－A：You support gun control，but do not oppose the death penalty．
－B：You support gun control and oppose the death penalty．
－C：You do not support gun control and do not oppose the death penalty．
－D：You do not support gun control，but do oppose the death penalty．

EXAMPLE

－We can test for a difference in proportions using the on－line calculator：

CONTINGENCY TABLE

	OPPOSE DEATH PENALTY		
SUPPORT	NO YES		
GUN	YES		
CONTROL	NO		

－I want to test

$$
\begin{aligned}
& H_{0}: P_{1}-P_{2}=0 \\
& H_{a}: P_{1}-P_{2} \neq 0
\end{aligned}
$$

－In words：the proportion of people supporting gun control is the same as the proportion of people who oppose the death penalty（individuals are always pro－life or pro－death）
－I will use $\alpha=0.05$
－Note：Group 1 is the set of responses to the question about opposition to the death penalty
－Group 2 is the set of responses to the question about support of gun control

CRITERION

- I need to check if I can use the normal approximation to the sampling distribution
- check if

$$
A+D>10
$$

or

$$
B+C>10
$$

- if not, do not use this test
- We use the on-line calculator

INTERPRETATION

- If we reject H_{0}, that indicates the probability of getting the observed difference of proportions, or bigger difference, when the population parameters were equal is less than 0.05 . We interpret that as meaning the population parameters are different.
- If we fail to reject H_{0}, that indicates the probability of getting the observed difference of proportions, or bigger, when the population parameters were equal is greater than 0.05 . We do not have strong enough evidence to conclude that the population parameters are different.

CONFIDENCE INTERVAL

- easy to create confidence intervals too
- the general formula is

$$
C I=\text { statistic } \pm(\text { critical value }) \times(\text { standard error })
$$

- for the difference of dependent proportions it becomes

$$
C I=\left(p_{1}-p_{2}\right) \pm\left(z_{c v}\right)\left(s_{p_{1}-p_{2}}\right)
$$

POWER

- Computing power (and estimating minimum sample sizes) feels a bit awkward for dependent proportions
- Although you are testing the differences in proportions that have traits, the needed information is the proportions about
disagreements across traits

- Let's look at an example

RETRIEVAL PRACTICE

－Studies have found that a good way to improve memory is to actively retrieve information from memory
－practice test instead of study
－A common study goes like：Each subject reads two paragraphs about different topics（e．g．，photosynthesis or leukemia）．After reading：
－For one paragraph the subject takes a practice test that requires them to recall information from the paragraph（e．g．，＂How does photosynthesis directly benefit our environment？＂）
－For the other paragraph，the subject reads the paragraph a second time．
－A week later，subjects are tested on both paragraphs（new questions）

RETRIEVAL PRACTICE

－Suppose you want to explore retrieval practice in a new setting （statistics－related questions）
－The null hypothesis is no difference in proportions for retrieval versus study conditions

$$
H_{0}: P_{1}-P_{2}=0
$$

－the alternative hypothesis is that there is a some difference

$$
H_{a}: P_{1}-P_{2} \neq 0
$$

－You need a specific alternative hypothesis，and using the data from the previous study is a good starting point

$$
H_{a}: P_{1 a}-P_{a 2}=0.44-0.28=0.16
$$

－but you specify it by identifying the disagreements in responses

RETRIEVAL PRACTICE

－Typical results for correctly answering the final questions are something like：
－Retrieval practice：$p_{1}=0.44$
－Study：$p_{2}=0.28$
－From the raw data（you typically cannot get this information from what is published in scientific papers）

		Has Trait 2？	
		No	Yes
Has Trait Tres	Yes	$A=6$	$B=10$
	No	$C=20$	$D=0$

RETRIEVAL PRACTICE

－We need

$$
\begin{gathered}
a=\frac{A}{n}=\frac{6}{36}=0.1667 \\
d=\frac{D}{n}=\frac{0}{36}=0
\end{gathered}
$$

－Suppose you want 0.9 for power

Specify the population characteristics：$H_{0}: P_{1}-P_{2}=0$				
H_{a} ：Enter the proportions for the disagreement cells of the contingency table for the alternative hypothesis．				
		Has Trait 2？		
		No	Yes	
Has Trait 1？	Yes A	$A / n=0.1667$	$B / n=$ NA	
	No	$C / n=$ NA	$D / n=0$	
$H_{a}: P_{a 1}-P_{a 2}=0.1667-0 .=0.1667$				
Specify the properties of the test：				
Type of test Two－tails a				
Type I error rate，$\alpha=0.05$				
Power $=0.9$				Calculate minimum sample size
Sample size，$n=64$				Calculate power

RETRIEVAL PRACTICE

－You might argue that a one－tailed test

$$
H_{0}: P_{1}-P_{2}>0
$$

－is appropriate because you know retrieval practice helps in most settings
－Then，to have 0.9 power：

Specify the population characteristics：$H_{0}: P_{1}-P_{2}=0$				
H_{a} ：Enter the proportions for the disagreement cells of the contingency table for the alternative hypothesis．				
		Has Trait 2？		
		No	Yes	
Has Trait 1？	Yes	$A / n=0.1667$	$B / n=$ NA	
	No	$C / n=$ NA	$D / n=0$	
$H_{a}: P_{a 1}-P_{a 2}=0.1667-0 .=0.1667$				
Specify the properties of the test：				
Type of test Postitive one－tail 0				
Type I error rate，$\alpha=0.05$				
Power＝ 0.9				Calculate minimum sample size
Sample size，$n=52$				Calculate power

CONCLUSIONS
－two－sample case
－dependent proportions
－confidence interval
－power

NEXT TIME

－Comparing two sample correlations
－Power
How careful are students？

PSY 201：Statistics in Psychology
 Lecture 30
 Hypothesis testing for two correlations
 How careful are students？

Greg Francis
Purdue University
Fall 2023

CORRELATIONS

HYPOTHESIS

- the null hypothesis to test is

$$
H_{0}: \rho_{1}=\rho_{2}
$$

- where ρ_{1} is the correlation coefficient of scores in population 1
- and ρ_{2} is the correlation coefficient of scores in population 2
- and the alternative hypothesis is

$$
H_{a}: \rho_{1} \neq \rho_{2}
$$

- or the same thing is:

$$
\begin{aligned}
& H_{0}: \rho_{1}-\rho_{2}=0 \\
& H_{a}: \rho_{1}-\rho_{2} \neq 0
\end{aligned}
$$

SAMPLING DISTRIBUTION

- to test H_{0} we need to know the sampling distribution of the difference of correlation coefficients
- unfortunately, just like for the one-sample case, the sampling distribution changes as ρ changes

SAMPLING DISTRIBUTION

－so we know that the sampling distribution of the $z_{r_{1}}-z_{r_{2}}$ values is normally distributed and（if H_{0} is true）has a mean of zero．
－all we need to know is the standard error of the difference between independent transformed correlation coefficients

$$
s_{z_{r_{1}}-z_{r_{2}}}=\sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}}
$$

－（note，you need more than three scores in each group）
－We just apply the same hypothesis testing approach as for other cases！

EXAMPLE

－Using the STATLAB data，we find that for the $n_{1}=30$ subjects who completed the Weber＇s Law lab，the correlation in matching sizes for the 10 pixel and 50 pixel targets is

$$
r_{1}=0.1516
$$

－In part this correlation reflects carefulness by the subject．If subjects are careless in their judgments，then they essentially add noise to their matching circles，and this will reduce the correlation

EXAMPLE

－In some tasks，correlation can be a measure of consistency or carefulness
－For example，in the STATLAB Weber＇s Law experiment，subjects adjust the size of a circle so it matches a target．There were two different target sizes，and we expect these matches to be correlated across subjects．

EXAMPLE

－In some tasks，correlation can be a measure of consistency or carefulness
－For example，in the STATLAB Typical Reasoning experiment， subjects rate the likelihood of certain characteristics of a described person．The descriptions were set up in a systematic way，so that some descriptions were expected to produce high ratings and other descriptions were expected to produce low ratings．

- Using the STATLAB data, we find that for the $n_{2}=29$ subjects who completed the Typical Reasoning lab, the correlation in likelihood ratings for the Low typicality and two activities and the High typicality and two activities is

$$
r_{2}=0.1836
$$

- In part this correlation reflects carefulness by the subject. If subjects are careless in their judgments, then they essentially add noise to their ratings, and this will reduce the correlation
- Are the correlations similar across the two tasks? They might seem like very different tasks, but to some extent, the correlations measure "effort" or "consistency" by the subjects.
- The overall strength of the correlation is less interesting than the similarity of the correlations. Some tasks may involve rather a lot of variability, so the correlation cannot be very large. Still, we can compare across tasks.
- Just looking at the correlations would not let us draw strong conclusions, but it could be part of a bigger argument.

EXAMPLE

Sample correlation for group $1, r_{1}=0.1516$
Sample size for group $1, n_{1}=30$
Sample correlation for group $2, r_{2}=0.1836$
Sample size for group $2, n_{2}=29$
Specify hypotheses:
$H_{0}: \rho_{1}-\rho_{2}=0$
$H_{a}:$ Two-tails
$\alpha=0.05$
Run Test

Null hypothesis $\quad H_{0}: \rho_{1}-\rho_{2}=0$ $\begin{array}{ll}\text { Difference of null Fisher } z \text { transforms } z_{p_{1}}-z_{p_{2}}=0.0000 \\ \text { Alternative hypothesis } & H_{a}\end{array}$ Type I error rate Label for group 1 Sample size for group 1 Sample correlation for group 1 Fisher z transform of r Label for group 2
Sample size for group 2
$\begin{array}{ll}\text { Sample correlation for group 2 } & n_{2}=29 \\ r_{2}=0.1836\end{array}$
Fisher z transform of $r_{2} \quad r_{2}=0.1857$ Sample standard error $\quad s_{z_{r}}=0.274770$ Test statistic
p value
Decision
$z=-0.119839$
$p=0.904611$
Do not the reject null hypothesis

MISSING?

- It is possible to compute a confidence interval for a difference of independent correlations.
- It is also possible to compute a hypothesis test for a difference of dependent correlations.
- However, these methods require some new ideas that we do not have time to go into (lots of special cases).

POWER

- Computing power for a test of independent correlations is conceptually similar to other power calculations
- however, the use of the Fisher z transform of correlations makes it difficult to have good intuition into how sample size relates to power
- Since we take the Fisher z transform of each correlation and then take the difference, a fixed difference of correlations does not necessarily produce a fixed difference of Fisher z transform values

POWER

- these differences mean that testing for a specific alternative

$$
H_{a}: \rho_{1}-\rho_{2}=0.5-0.4
$$

- is easier than testing for

$$
H_{a}: \rho_{1}-\rho_{2}=0.2-0.1
$$

- Suppose you wanted 80% power for each test

POWER

- For example,

$$
r_{1}-r_{2}=0.3-0.2=0.1
$$

- corresponds to

$$
z_{r_{1}}-z_{r_{2}}=0.203-0.100=0.103
$$

- but

$$
r_{1}-r_{2}=0.5-0.4=0.1
$$

- corresponds to a larger value:

$$
z_{r_{1}}-z_{r_{2}}=0.549-0.424=0.125
$$

- a difference of 1006 subjects across the two groups!

POWER

POWER

- Let's look at a specific example
- Height is correlated with economic success (income, wealth). Taller people are more successful
- Combining data across multiple studies suggests a difference in the correlation for men compared to women
- Men: $r_{1}=0.24$
- Women: $r_{2}=0.18$

Suppose you want to test this difference in correlations for Purdue engineering technology graduates. You will look at starting salaries and height.

- Engineering Technology degrees are given by Purdue Polytechnic, and each year it typically distributes BS degrees to 18 women and 78 men.
- You think you can get starting salary and height data for a third of the graduates. If the Purdue graduates are similar to the general population, what is the power of your study?

POWER

- there's
no point in running such a study!

Specify he population characterisicics:

$H_{0}: \rho_{1}-\rho_{2}=0$
$\begin{aligned} & H_{a}: \rho_{a 1}-\rho_{a 2}=0.06 \\ & \rho_{a 1}=0.24\end{aligned} \quad \rho_{a 2}=0.18$
Specify the properties of the test:
Type I Ieror ref test Two-tals :
Type I error rate, $\alpha=0.05$
$\begin{aligned} \text { Power } & =0.0511488 \quad \text { Calculate minimum sample size } \\ \text { Sample size for group } 1, n_{1} & =26\end{aligned}$
$\begin{aligned} \text { Sample size for group } 1, n_{1} & =26 \\ \text { Sample size for group } 2, n_{2} & =6\end{aligned}$

- You need a total of nearly 8000 subjects to have 80% power Specify he population characerisisics
$H_{0}: \rho_{1}-\rho_{2}=0$
$H_{a}: \rho_{a 1}-\rho_{a 2}=0.06$
$\rho_{a 1}=0.24 \quad \rho_{a 2}=0.18$
Specify the properties of the test: Type of test Two-tails : Type I error rate, $\alpha=0.05$ Power= 0.8 Sample size for group $1, n_{1}=3986$ Sample size for group $2, n_{2}=3986 \quad$ Calculate power
- You simply cannot test for these kinds of small differences in correlations for relatively small populations (like Purdue graduates).

CONCLUSIONS

- two-sample case for correlations
- power
- trust the numbers!

PSY 201：Statistics in Psychology
Lecture 31
Multiple testing
－More than two comparisons
－Multiple testing
Error is sneaky．

Error is sneaky．

Greg Francis

Purdue University
Fall 2023

HYPOTHESIS TESTING

－we know how to test the difference of two means

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{a}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

－by using the t distribution and estimates of standard error
－what if you have more populations and what to know if they are all equal？

MULTIPLE t－TESTS

－if we have $K=5$ population means，we might want to compare each mean to all the others
－requires

$$
c=\frac{K(K-1)}{2}=10
$$

－different t－tests
－suppose each test is with $\alpha=0.05$
－What is the Type I error？

MULTIPLE t - TESTS

- we have a risk of making a type I error for each t test
- since we have $c=10$ different t-tests, with $\alpha=0.05$, the Type I error rate becomes approximately

$$
1-(1-\alpha)^{c}=0.40
$$

- bigger risk of error than you might expect!
- to be sure we do not make any Type I errors, we would need to set α much smaller to insure that Type I error rate is below 0.05 !

ADJUST α

- What kind of power do we have?
- Suppose $\sigma=1$ and we take samples of size $n=50$ for each condition
- If you use $\alpha=0.005$, and one of the means, $\mu_{1}=0.5$, is truly different from the other four means, $\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}=0$. What is the probability you will reject H_{0} ?
- For the six tests that do not involve μ_{1}, the probability of any of them producing a Type I error is

$$
1-(1-0.005)^{6}=0.029
$$

- To a first approximation, to make sure the Type I error rate for $c=10$ tests is less than 0.05 , you could set the α criterion for each t-test to be

$$
\alpha=\frac{0.05}{c}=\frac{0.05}{10}=0.005
$$

- Then, the probability of any given test producing a Type I error is 0.005 , and the probability than any of the 10 tests produces a Type I error is 0.05
- This is called the Bonferroni correction
- But decision making always involves trade offs.

ADJUST α

- For the four tests involving μ_{1}, we can estimate power of each test, by using the on-line power calculator:

$$
\begin{aligned}
& \text { Specify the population characteristics: } \\
& \qquad \begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{a}: \mu_{a 1}-\mu_{a 2}=0.5 \\
& \sigma_{1}=1 \\
& \sigma_{2}=1 \\
& \text { Or enter a standardized effect size } \\
& \frac{\left(\mu_{a 1}-\mu_{a 2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma}=\delta=0.5 \\
& \text { Specify the properties of the test: } \\
& \text { Type of test } \\
& \text { Type I error rate, } \alpha=0.005 \\
& \text { Power }=0.3604876 \\
& \text { Cals }
\end{aligned} \\
& \text { Cample size for group } 1, n_{1}=50 \\
& \text { Sample size for group } 2, n_{2}
\end{aligned}
$$

POWER

- We have four chances for one of the tests involving μ_{1} to be significant, so the probably of at least one being significant is

$$
1-(1-0.360)^{4}=0.832
$$

- On the other hand, the probably that each of those four experiments will reject H_{0} is

$$
(0.360)^{4}=0.0168
$$

- So, you are almost surely going to draw some wrong conclusions

POWER

- Trying to control the error probabilities becomes complicated when you have multiple comparisons
- The probability of making at least one Type I error increases (power for detecting something increases)
- The probability of making at least one Type II error increases (power for the full set of differences decreases)
- This will always be true, but there are steps we can take to partially deal with the problem

POWER

- If you want to have a 0.9 probability that all four tests involving μ_{1} reject H_{0}, each test needs a power of

$$
(0.9)^{1 / 4}=0.974
$$

- We can identify the required sample size for each condition

- this is an approximation because the tests are not independent

DEMONSTRATION

- Open your five packages and count the number of green M\&M's in each package. You have five numbers, $n=5$, that make a sample
- within each sample, compute:

$$
\begin{gathered}
\bar{X}_{k}=\frac{\sum_{i} X_{k i}}{5} \\
s_{k}=\sqrt{\frac{\sum_{i} X_{k i}^{2}-\left[\left(\sum_{i} X_{k i}\right)^{2} / 5\right]}{4}}
\end{gathered}
$$

- Use the on-line calculator for Descriptive Statistics, if you want (use your phone). No need to log in.

DEMONSTRATION

－now，share your \bar{X}_{j} and s_{j} with your＂neighbor＂by following the arrows below
－get \bar{X}_{j} and s_{j} from your＂neighbor＂

DEMONSTRATION

－（2）Compute test statistic：

$$
\begin{gathered}
s^{2}=\frac{\left(n_{k}-1\right) s_{k}^{2}+\left(n_{j}-1\right) s_{j}^{2}}{n_{k}+n_{j}-2}=\frac{(4) s_{k}^{2}+(4) s_{j}^{2}}{8}= \\
s_{\bar{X}_{k}-\bar{X}_{j}}=\sqrt{s^{2}\left(\frac{1}{n_{k}}+\frac{1}{n_{j}}\right)}=\sqrt{s^{2}\left(\frac{1}{5}+\frac{1}{5}\right)}= \\
t=\frac{\left(\bar{X}_{k}-\bar{X}_{j}\right)-(0)}{s_{\bar{X}_{k}-\bar{X}_{j}}}= \\
d f=n_{k}+n_{j}-2=8
\end{gathered}
$$

－（3）Compute the p－value using the t－distribution calculator
－Instead we will identify the $t_{c v}$ that corresponds to $p=0.05$ ．It is $t_{c v}=2.306$
－（4）Make a decision：

$$
t=\quad<?>\quad= \pm 2.306
$$

DEMONSTRATION

－Run a hypothesis test to compare your mean to the mean of your neighbor
－we＇ll assume homogeneity of variance
－（1）State the hypothesis：

$$
\begin{aligned}
& H_{0}: \mu_{k}=\mu_{j} \\
& H_{a}: \mu_{k} \neq \mu_{j}
\end{aligned}
$$

－and set the criterion
$\alpha=0.05$

DEMONSTRATION

－We know from the outset that H_{0} is actually true here．

$$
\mu_{k}=\mu_{j}
$$

－because all the samples are actually from the very same population （M\＆M packages from the same factory have a fixed ratio of colors）
－Still，just due to sampling errors，we expect to have some tests reject H_{0} ．The probability of at least one is around：

$$
1-(1-\alpha)^{c}=
$$

－where c is the number tests（number of students in the class）
－Not only is it a pain to compute multiple comparisons of means
－but it tends to lead to more Type I error than α indicates
－we could decrease α to a smaller value so that the overall Type I error is how we want it
－which will decrease power
－testing multiple means
－loss of control of Type I error

NEXT TIME

－there is a better method
－ANOVA
－two measures of variance
Measure twice，cut once．

PSY 201：Statistics in Psychology
Lecture 32
Analysis of Variance
Measure twice，cut once．
Greg Francis
Purdue University

Fall 2023

ANOVA VARIABLES

- independent variables: variable that forms groupings
- one-way ANOVA: one independent variable
- levels: number of groups, number of populations
- e.g. Method of teaching is an independent variable
- you may teach in 17 different ways (levels) and have 17 different sample groups with sample means

$$
\bar{X}_{1}, \bar{X}_{2}, \ldots \ldots . \bar{X}_{16}, \bar{X}_{17}
$$

- so that for your hypothesis test you would want to test whether all the population means of the different levels are the same

HYPOTHESES

- for one-way ANOVA the hypotheses are

$$
\begin{gathered}
H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{K} \\
H_{a}: \mu_{i} \neq \mu_{k} \text { for some } i, k
\end{gathered}
$$

- the null hypothesis is that all population means are the same
- the alternative hypothesis is that at least one mean is different from another

ANOVA VARIABLES

- we need additional subscripts to keep track of variables

$X_{i k}$

- is the score for the i th subject in the k th level (group)
n_{k}
- is the number of scores in the k th level

$$
\sum_{i} X_{i k}
$$

- is the sum of scores in the k th level

$$
\sum_{k} \sum_{i}^{n_{k}} X_{i k}
$$

- is the sum of all scores

INTUITION

- the basic approach of ANOVA is to make two calculations of variance
(1) We can calculate variance of each group separately and combine them to estimate the variance of all scores. (within variance, s_{W}^{2})
(2) We can also calculate the variance among all the group means, relative to a grand mean. (between variance, s_{B}^{2})
- these estimates will be the same if H_{0} is true!
- these estimates will be different if H_{0} is not true!
- what contributes to a particular score?
- assume a linear model

$$
X_{i k}=\mu+\alpha_{k}+e_{i k}
$$

- $X_{i k}$ is the i th score in the k th group
- μ is the grand mean for the population, across all groups
- $\alpha_{k}=\mu_{k}-\mu$ is the effect of belonging to group k
- $e_{i k}$ is random error associated with the score
- $e_{i k}$ changes because of random sampling (normally distributed, mean of zero, σ^{2})

SUM OF SQUARES

- we want to estimate σ^{2} (variance of population if H_{0} is true)
- need sum of squares

$$
\Sigma_{k} \Sigma_{i}\left(X_{i k}-\bar{X}\right)^{2}
$$

- consider one score

$$
\left(X_{i k}-\bar{X}\right)=\left(X_{i k}-\bar{X}_{k}\right)+\left(\bar{X}_{k}-\bar{X}\right)
$$

- so

$$
\left(X_{i k}-\bar{X}\right)^{2}=\left[\left(X_{i k}-\bar{X}_{k}\right)+\left(\bar{X}_{k}-\bar{X}\right)\right]^{2}
$$

- or

$$
\left(X_{i k}-\bar{X}\right)^{2}=\left(X_{i k}-\bar{X}_{k}\right)^{2}+2\left(\bar{X}_{k}-\bar{X}\right)\left(X_{i k}-\bar{X}_{k}\right)+\left(\bar{X}_{k}-\bar{X}\right)^{2}
$$

SUM OF SQUARES

- if we sum across all subjects in category k
$\sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}\right)^{2}=\sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}_{k}\right)^{2}+2\left(\bar{X}_{k}-\bar{X}\right) \sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}_{k}\right)+\sum_{i}^{n_{k}}\left(\bar{X}_{k}-\bar{X}\right)^{2}$
- since deviations from a mean equal zero, this reduces to

$$
\sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}\right)^{2}=\sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}_{k}\right)^{2}+\sum_{i}^{n_{k}}\left(\bar{X}_{k}-\bar{X}\right)^{2}
$$

- in addition,

$$
\sum_{i}^{n_{k}}\left(\bar{X}_{k}-\bar{X}\right)^{2}=n_{k}\left(\bar{X}_{k}-\bar{X}\right)^{2}
$$

- so we get

$$
\sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}\right)^{2}=\sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}_{k}\right)^{2}+n_{k}\left(\bar{X}_{k}-\bar{X}\right)^{2}
$$

SUM OF SQUARES

- now, we sum across the k groups to get the total sum of squares

$$
\sum_{k} \sum_{i}\left(X_{i k}-\bar{X}\right)^{2}=\sum_{k}\left(\sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}_{k}\right)^{2}+n_{k}\left(\bar{X}_{k}-\bar{X}\right)^{2}\right)
$$

- which becomes

$$
\sum_{k} \sum_{i}\left(X_{i k}-\bar{X}\right)^{2}=\sum_{k} \sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}_{k}\right)^{2}+\sum_{k} n_{k}\left(\bar{X}_{k}-\bar{X}\right)^{2}
$$

- or

$$
S S_{T}=S S_{W}+S S_{B}
$$

- where
- $S S_{T}$ is the total sum of squares.
- $S S_{W}$ is the within sum of squares. Deviation of scores from the group mean.
- $S S_{B}$ is the between sum of squares. Deviation of group means from the grand mean.

ESTIMATE OF σ^{2}

- within each group, deviations from the mean are due to the error terms $e_{i k}$, so

$$
s_{k}^{2}=\frac{\sum_{i}\left(X_{i k}-\bar{X}_{k}\right)^{2}}{n_{k}-1} \rightarrow \sigma^{2}
$$

- to get a better estimate, pool across all groups (just like for two-sample t-test)

$$
\frac{S S_{W}}{N-K}=M S_{W} \rightarrow \sigma^{2}
$$

- here $M S_{W}$ stands for mean squares within
- $N-K$ is the degrees of freedom

WITHIN DEVIATIONS

$$
S S_{W}=\sum_{k} \sum_{i}^{n_{k}}\left(X_{i k}-\bar{X}_{k}\right)^{2}
$$

- what causes this to be greater than zero?
- since

$$
X_{i k}=\mu+\alpha_{k}+e_{i k}
$$

- $\mu+\alpha_{k}$ is fixed as i varies
- thus, deviations from \bar{X}_{k} must be due to the $e_{i k}$ term (random error)

BETWEEN DEVIATIONS

$$
S S_{B}=\sum_{k} n_{k}\left(\bar{X}_{k}-\bar{X}\right)^{2}
$$

- what causes this to be greater than zero?
- since

$$
X_{i k}=\mu+\alpha_{k}+e_{i k}
$$

- the mean of group k is

$$
\bar{X}_{k}=\frac{\sum_{i} X_{i k}}{n_{k}}=\mu+\alpha_{k}+\frac{\sum_{i} e_{i k}}{n_{k}}
$$

- as k changes, μ stays the same
- so any deviations from \bar{X} are due to changes in α_{k} (changes between groups) or to changes in $\frac{\sum_{i} e_{i k}}{n_{k}}$ (random error)

ESTIMATE OF σ^{2}
－if H_{0} is true，then all $\alpha_{k}=0$ and any deviations must be due only to the random error terms $\left(\sum_{i} e_{i k} / n_{k}\right)$
－so we can again estimate σ^{2} as

$$
M S_{B}=\frac{S S_{B}}{K-1}=\frac{\sum_{k} n_{k}\left(\bar{X}_{k}-\bar{X}\right)^{2}}{K-1} \rightarrow \sigma^{2}
$$

－here $K-1$ is degrees of freedom
－on the other hand，if H_{0} is not true，then $M S_{B}$ includes deviations due to α_{k} ，so

$$
M S_{B}>\sigma^{2}
$$

－if H_{0} is true，should get $F=1$ ，if H_{0} is not true，should get $F>1$
－as always for inferential statistics，we need to know if F is significantly greater than 1.0
－depends on two degrees of freedom
－df numerator $=K-1$
－df denominator $=N-K$
－look up p－value using the online F－distribution calculator
－so，we do not know what σ^{2} is，but we have two estimates
－$M S_{W}$ ：always estimates σ^{2}
－$M S_{B}$ ：estimates σ^{2} if H_{0} is true．Larger than σ^{2} if H_{0} is false．
－compare the estimates by computing

$$
F=\frac{M S_{B}}{M S_{W}}
$$

empare the estimates by computing

TESTING

（1）State the hypothesis and set the criterion：H_{0} ：$\mu_{1}=\mu_{2}=\ldots=\mu_{K}$ ， $H_{a}: \mu_{i} \neq \mu_{j}$ for some i, j ．
（2）Compute the test statistic $F=M S_{B} / M S_{W}$ ．
（3）Compute the p－value．Need to find the degrees of freedom．
（3）Make a decision．

- A college professor wants to determine the best way to present an important lecture topic to his class.
- He decides to do an experiment to evaluate three options. He solicits 27 volunteers from his class and randomly assigns 9 to each of three conditions.
- In condition 1, he lectures to the students
- In condition 2, he lectures plus assigns supplementary reading.
- In condition 3, the students see a film on the topic plus receive the same supplementary reading as the students in condition 2.
- The students are subsequently tested on the material. The following scores (percentage correct) were obtained.

(1) HYPOTHESES

- for one-way ANOVA the hypotheses are

$$
\begin{gathered}
H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
H_{a}: \mu_{i} \neq \mu_{k} \text { for some } i, k
\end{gathered}
$$

- Set $\alpha=0.05$

EXAMPLE

Lecture Condition 1	Lecture + Reading Condition 2	Film + Reading Condition 3
92	86	81
86	93	80
87	97	72
76	81	82
80	94	83
87	89	89
92	98	76
83	90	88
84	91	83

- No one does the calculations by hand. Always use a computer.

(2) TEST STATISTIC

- Use the on-line calculator
- We have to format the data properly for the calculator
- One score to each line
- Indicate the level (no spaces) and then the score

Lecture	92
Lecture	86
\ldots	
LectureReading	86
LectureReading	93
\ldots	
FilmReading	81
FilmReading	80

- Order does not matter
(2) TEST STATISTIC
- Data could look like this when pasted into the calculator

- lots of information
- We read out the results of the analysis in the ANOVA summary table

Source	df	SS	MS	F	p-value
Between	2	408.0741	204.0370	7.2894	0.00336
Within	24	671.7778	27.9907		
Total	26	1079.8519			

(2) TEST STATISTIC

(2) TEST STATISTIC

Source	df	SS	MS	F	p-value
Between	2	408.0741	204.0370	7.2894	0.00336
Within	24	671.7778	27.9907		
Total	26	1079.8519			

- We can double check things

$$
\begin{aligned}
F & =\frac{M S_{B}}{M S_{W}}=\frac{204.0370}{27.9907}=7.2894 \\
M S_{B} & =\frac{S S_{B}}{K-1}=\frac{408.0741}{3-1}=204.0370 \\
M S_{W} & =\frac{S S_{W}}{N-K}=\frac{671.7778}{27-3}=27.9907
\end{aligned}
$$

Source	df	SS	MS	F	p-value
Between	2	408.0741	204.0370	7.2894	0.00336
Within	24	671.7778	27.9907		
Total	26	1079.8519			

- between degrees of freedom (numerator)

$$
d f=K-1=3-1=2
$$

- within degrees of freedom (denominator)

$$
d f=N-K=27-3=24
$$

- Total degrees of freedom

$$
d f=N-1=27-1=26
$$

(3) p VALUE

Source	df	ss	MS	F	p-value
Between	2	408.0741	204.0370	7.2894	0.00336
Within	24	671.7778	27.9907		
Total	26	1079.8519			

- Check the p-value using the F distribution calculator

- Note, we just compute p from one tail, but this is equivalent to a two-tailed t-test

GENERALITY

- The great thing about ANOVA is that these basic steps stay the same even if you have many more means to be compared
- I happen to have data from 8 different classes that all completed an experiment where subjects responded as quickly as possible whether a set of letters formed a word or not
- The summary is the same format as above
(4) DECISION
- since

$$
p=0.00336<.05=\alpha
$$

- we reject H_{0}. The methods of presentation are not equally effective.
- Note, does not tell us which pair of means are different!
- Look at means

Condition	Mean	Standard deviation	Sample size
Lecture	85.22222222222222	5.214829282387329	9
LectureReading	91	5.338539126015656	9
FilmReading	81.55555555555556	5.317685377847901	9

GENERALITY

Source	df	SS	MS	F	p-value
Between	7	2324584.6485	332083.5212	6.6500	0.00000
Within	407	20324589.8142	49937.5671		
Total	414	22649174.4627			

Condition	Mean	Standard deviation	Sample size
Francis200F15	788.3333333333335	244.2585052255086	81
Francis200S16	756.0007352941174	204.17983832898088	68
Francis200F16	750.0464601769914	218.19667178177372	113
Francis200F17	756.6531914893621	214.33283856802967	94
FUSfall2018	766.1649999999998	172.00442964925605	30
Psy200Spring15	1167.3535714285715	360.9423454196428	14
FS16PSY200	776.26	224.8173218909571	10
PSY2008HKIED	849.6600000000002	191.92566073873397	5

- it would be the same format with 8000 classes!

CONCLUSIONS

NEXT TIME

- testing multiple means
- two estimates of population variance
- one estimate always estimates variance
- other estimate is true only if H_{0} is true
- lets us test H_{0}
- interpreting ANOVA
- contrasts
- more multiple testing

Some thing versus which thing.

ANOVA

PSY 201: Statistics in Psychology
Lecture 33
Analysis of Variance
Some thing versus which thing.

Greg Francis

Purdue University
Fall 2023

- Test statistic:

$$
\begin{aligned}
& F=\frac{M S_{B}}{M S_{W}} \\
& F=\frac{\text { Estimated variability from noise and mean differences }}{\text { Estimated variability from noise }}
\end{aligned}
$$

- if H_{0} is true, and F is sufficiently larger than 1 , then a rare event has happened. Since rare events are rare, when $F \gg 1$ we suppose that H_{0} is not true
- Rareness is established by the p value, which is gotten from an F distribution with $K-1 d f$ in the numerator and $N-K d f$ in the denominator

HYPOTHESES

- The null is an omnibus hypothesis. It supposes no difference between any population means

$$
H_{0}: \mu_{i}=\mu_{j} \forall i, j
$$

- the alternative is the complement

$$
H_{a}: \mu_{i} \neq \mu_{j} \text { for some } i, j
$$

- Note, there is no one-tailed version of ANOVA

INTERPRETING

- It might be tempting to just look at the data and "wing it"
- For example, looking at the means, it seems that class

Psy200Spring15 has a much larger mean than any other class

Source	df	ss	Ms	F	p-value
Betwen	7	2324544.6485	332083.5212	6.6500	0.00000
Withn	407	20344589.8142	49937.5671		
Total	414	22649174.4627			

Condition	Mean	Standard deviation	Sample size
Francis200F15	788.3333333333335	244.2585052255086	81
Francis200516	756.0007352941174	204.17983832888088	${ }^{68}$
Francis200F16	750.0464601769914	218.19687778177372	${ }^{113}$
Francis200	6.6531914893621	214.33283856802967	94
FUStal2018	766.1649999999998	172.00442964925605	30
Psp200Spring15	1167.353574285715	360.9423454196428	14
FS16PSY200	776.26	224.8173218809571	10
PSY2008HKED	849.660000000002	191.9256607387	5

- But that class also has a small number of students $(n=14)$, and a large standard deviation ($s=360.9$), so we would expect quite a bit of variability in the mean value. Maybe this big mean is not so rare, given the variability due to random sampling

INTERPRETING

- I happen to have data from 8 different classes that all completed an experiment where subjects responded as quickly as possible whether a set of letters formed a word or not

- The conclusion is that at least one population mean seems to be different from the other population means. Something is different
- The ANOVA does not tell you which mean is different from the others; or if more than one mean is different from others.

Greg Francis (Purdue University)	PSY 201: Statistics in Psychology	Fall 2023	4/1

INTERPRETING

- More than one mean might differ from other means
- Even if the mean for Psy200Spring15 is different from the others, might other means also be different?

Condition	Mean	Standard doviation	Sample size
Francis200F15	788.3333333333335	244.2588052255086	81
920	756.0007352941174	204.17983832888088	68
Francis200	914	218.19667178177372	113
Francis200F17	756.6531914893621	214.33283856802967	94
Fustall218	766.1649999999998	172.00442964925605	30
Ps, 200 Spring15	1167.3535714285715	360.9423454498428	14
FS16PSY200	776.26	224.8173218009571	10
PSY2008HKED	849.660000000002	191.92566073873397	5

- We would really like to know which means seem to be different from which other means

TYPE I ERROR

TYPE I ERROR

- Multiple testing problem
- To motivate ANOVA, we mentioned that it is problematic to just test all pairwise comparisons of group means. With 8 means, there would be 28 tests. So the Type I error rate would be around

$$
1-(1-\alpha)^{28}=\left(1-0.95^{28}\right)=0.76
$$

- Instead of just testing all possible comparisons, suppose we first require that the ANOVA produces a significant result. If H_{0} is true, the ANOVA should only conclude that some difference exists with a probability of 0.05 (or whatever you choose as α) means means are different! the ANOVA
- Thus, we can control the overall Type I error rate by insisting that our data produce a significant ANOVA before we start testing different
- We want to check that something is different before we check which
- If we now test Psy200Spring15 against each of the other seven means, the Type I error rate can be no bigger than what it was for
- In fact, it has to be a bit smaller than the α used for the ANOVA because we have to satisfy two criteria
- If H_{0} is true, 95% of the time, we never compare the means to each other

t tests

- One approach is to just run t tests (Welch's test) to compare different means
- For example, we can test Psy200Spring15 against Francis200F15

Test summary	
Type of test	Welch's Test
Null hypothesis	$H_{0}: \mu_{1}-\mu_{2}=0$
Alternative hypothesis	$H_{a}: \mu_{1}-\mu_{2} \neq 0$
Type I error rate	$\alpha=0.05$
Label for group 1	Group 1
Sample size 1	$n_{1}=14$
Sample mean 1	$\bar{X}_{1}=1167.3536$
Sample standard deviation 1	$s_{1}=360.942345$
Label for group 2	Group 2
Sample size 2	$n_{2}=81$
Sample mean 2	$\bar{X}_{2}=788.3333$
Sample standard deviation 2	$s_{2}=244.258505$
Pooled standard deviation	$s=\mathrm{NA}$
Sample standard error	$s_{\bar{x}_{1}-\bar{X}_{2}}=76.322416$
Test statistic	$t=4.966041$
Degrees of freedom	$d f=15.124024621983446$
p value	$p=0.000165$
Decision	Reject the null hypothesis
Confidence interval critical value $t_{c v}=2.129928$	
Confidence interval	$\mathrm{Cl}_{95}=(216.458972,541.581502)$

t tests

- One approach is to just run t tests (Welch's test) to compare different means
- For example, we can test Psy200Spring15 against PSY2008HKIED

Test summary	
Type of test	Welch's Test
Null hypothesis	$H_{0}: \mu_{1}-\mu_{2}=0$
Alternative hypothesis	$H_{a}: \mu_{1}-\mu_{2} \neq 0$
Type I error rate	$\alpha=0.05$
Label for group 1	Group 1
Sample size 1	$n_{1}=14$
Sample mean 1	$\bar{X}_{1}=1167.3536$
Sample standard deviation 1	$s_{1}=360.942345$
Label for group 2	Group 2
Sample size 2	$n_{2}=5$
Sample mean 2	$\bar{X}_{2}=849.6600$
Sample standard deviation 2	$s_{2}=191.925607$
Pooled standard deviation	$s=$ NA
Sample standard error	$s_{\bar{X}_{1}-\bar{X}_{2}}=171.445901$
Test statistic	$t=1.853025$
Degrees of freedom	$d f=13.741233049477954$
p value	$p=0.085474$
Decision	Do not the reject null hypothesis
Confidence interval critical value $t_{c v}=2.148582$	
Confidence inter	$\mathrm{Cl}_{95}=(-50.672018,686.059158)$

CONTRASTS

- There is a better (and more general approach)
- ANOVA assumes/requires homogeneity of variance

$$
\sigma_{i}^{2}=\sigma_{j}^{2} \forall i, j
$$

- For the t-test we pooled variances/standard deviations to get a better estimate of σ
- With more populations, we can pool all of the sample variances and thereby get a still better estimate
- Thus, even when we compare Psy200Spring15 against Francis200F15, we can use the data from the other samples to get a better estimate of σ

CONTRASTS

- For example, we can test Psy200Spring15 against Francis200F15

$$
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{M S_{W}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=\sqrt{(49937.5671)\left(\frac{1}{14}+\frac{1}{81}\right)}=64.67984425
$$

- Compare to the traditional t test, where

$$
s_{\bar{X}_{1}-\bar{X}_{2}}=76.322416
$$

- So with the pooled variance, we get

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{s_{\bar{X}_{1}-\bar{X}_{2}}}=\frac{379.02}{64.6798}=5.8599
$$

- Compare to $t=4.966$ for the traditional t test
- The degrees of freedom is based on how many scores contribute to the variance calculation, so we get

$$
d f=N-K=415-8=407
$$

- compare to $d f=n_{1}+n_{2}-2=14+81-2=93$, for traditional t test (smaller with Welch's test)

POOLED ESTIMATE

- Fortunately, the pooled estimate of variance is easy to find
- We computed it in the ANOVA, it is $M S_{W}$

Condition	Mean	Standard deviation	Sample size
Francis200F15	788.33333333333335	244.2585052255086	81
Francis200S16	756.0007352941174	204.17983832898088	68
Francis200F16	750.0464601769914	218.19667178177372	113
Francis200F17	756.6531914893621	214.33283856802967	94
FUSfall2018	766.1649999999998	172.00442964925605	30
Psy200Spring15	1167.35357142857115	360.9423454196428	14
FS16PSY200	776.26	224.8173218909571	10
PSY2008HKIED	849.6600000000002	191.92566073873397	5

- Thus, the standard error that we use for the t test is

$$
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{M S_{W}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

CONTRASTS

- For example, we can test Psy200Spring15 against PSY2008HKIED

$$
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{M S_{W}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=\sqrt{(49937.5671)\left(\frac{1}{14}+\frac{1}{5}\right)}=116.423
$$

- Compare to the traditional t test, where

$$
s_{\bar{X}_{1}-\bar{X}_{2}}=171.446
$$

- So with the pooled variance, we get

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{s_{\bar{X}_{1}-\bar{X}_{2}}}=\frac{317.69}{116.423}=2.7288
$$

- The degrees of freedom is based on how many scores contribute to the variance calculation, so we get

$$
d f=N-K=415-8=407
$$

- so $p=0.0066$
- Compare to $t=1.853$ for the traditional t test
- compare to $d f=n_{1}+n_{2}-2=14+5-2=17$, and $p=0.08$
－With a contrast，we get a better estimate of $s_{\bar{X}_{1}-\bar{X}_{2}}$ ，which sometimes means we can reject H_{0} ．Not always，though．
－It is possible for a standard t test to reject H_{0} ，but the corresponding contrast test does not reject H_{0}（because the sample s^{2} is smaller than $M S_{W}$ ）
－We do not have any cases like that in our current data set
－Generally speaking，using $M S_{W}$ is better than using the pooled s^{2} because more data contributes to the estimate

OTHER CONTRASTS

－We set up contrast weights，c_{i} ，for each class＇mean
－Our null hypothesis will be

$$
H_{0}: \sum_{i=1}^{K}\left(c_{i} \mu_{i}\right)=0
$$

－and we require that the contrast weights sum to 0 ：

$$
\sum_{i=1}^{K} c_{i}=0
$$

－Our alternative hypothesis is

$$
H_{a}: \sum_{i=1}^{K}\left(c_{i} \mu_{i}\right) \neq 0
$$

－（one－tailed tests are also possible）

OTHER CONTRASTS

－Comparing two means is actually a special case of using contrasts
－We can also compare various combinations of means

Source	df	SS	MS	F	p－value
Between	7	2324584.6485	332083.5212	6.6500	0.00000
Within	407	20324589.8142	49937.5671		
Total	414	22649174.4627			

Condition	Mean	Standard deviation	Sample size
Francis200F15	788.3333333333335	244.2585052255086	81
Francis200S16	756.0007352941174	204.17983832898088	68
Francis200F16	750.0464601769914	218.196673178177372	113
Francis200F17	756.6531914893621	214.33283856802967	94
FUSfall2018	766.164999999998	172.00442964925605	30
Psy200Spring15	1167.3535714285715	360.9423454196428	14
FS16PSY200	776.26	224.8173218909571	10
PSYZOOBHKIED	849.6600000000002	191.92566073873397	5

－For example，we might wonder if the mean for classes taught by Dr． Francis differs from the mean for classes not taught by Dr．Francis

TEST STATISTIC

－We compute the weighted sum of means

$$
L=\sum_{i=1}^{K}\left(c_{i} \bar{X}_{i}\right)
$$

－which has a standard error of：

$$
s_{L}=\sqrt{M S_{W} \sum_{i=1}^{K} \frac{c_{i}^{2}}{n_{i}}}
$$

－and our test statistic is

$$
t=\frac{L}{s_{L}}
$$

－which follows a t distribution with

$$
d f=N-K
$$

－where N is the sum of sample sizes across all groups and K is the number of groups

ONLINE CALCULATOR

－To compare the mean of the four classes taught by Dr．Francis to the mean of the other four classes，we use contrast weights of ± 1

Contrast test

```
To set up a contrast, enter a weight value for each population mean such that the weights sum to 0,
H0:1 Hfrmacinapefs+1 Specify hypotheses:
```



```
Ha
\alpha 0.05
Runcontrast
```



```
Type I error rate a=0.05
Weighted sum of L=-508.4048511347672
Standard error }\mp@subsup{s}{L}{}=150.122916407
Test staistic t==3.386590557260787
N Degrees of df=407
p frecoom
ll
```


ONLINE CALCULATOR

－It can be appropriate to set some weights equal to 0 ．For example，if you want to compare the mean from two classes in 2015 against the mean from three classes in 2016，you can set weights as：

```
```

To set up a contrast, enter a weight value for each population mean such that the weights sum to 0.

```
```

```
```

To set up a contrast, enter a weight value for each population mean such that the weights sum to 0.

```
```



```
```

*)

```
```

*)
Ha:TVotals [0
Ha:TVotals [0
a0.05
a0.05
Run Contrast
Run Contrast
N\mp@code{Null hypochesisis)}
N\mp@code{Null hypochesisis)}
Null hypothesis (
Null hypothesis (
\ll
\ll
Type I error rate }\alpha=0.0
Type I error rate }\alpha=0.0
Weighted sum of L= - =302.4463233434972

```
```

Weighted sum of L= - =302.4463233434972

```
```



```
```

Test staistic te-5.216819279364137

```
```

Test staistic te-5.216819279364137
l}\begin{array}{l}{\mathrm{ Devrees of (ficem}}
{\mathrm{ fre407}}
l}\begin{array}{l}{\mathrm{ Devrees of (ficem}}
{\mathrm{ fre407}}
l}\begin{array}{l}{\mathrm{ frecomm (value}}
{p}
{\mathrm{ Decision }}

```
l}\begin{array}{l}{\mathrm{ frecomm ( value}}\\{p}\\{\mathrm{ Decision }}
```

```
Reject the null hypothesis
```

```
Reject the null hypothesis
```


ONLINE CALCULATOR

－Other sets of contrast weights compare other combinations．For example，to contrast the mean of the non－US based class，
PSY2008HKIED，against all the other classes，we could use：
To set up a contrast，enter a weight value for each population mean such that the weights sum to 0 ．

H_{3} : Tivotalts
$\alpha 0.05$

Type I error rate $\alpha=0.05$
$\underset{\substack{\text { Weighted sum of } \\ \text { sample means } \\ L=-186.80770827762535 \\ \hline}}{ }$
Standard error $\quad s_{L}=708.4755001381367$
Test tatistic $\quad t=-0.2636756080361312$
$\begin{aligned} & \text { Degreses of } \\ & \text { freedom }\end{aligned} \quad d j=407$
$\begin{aligned} & p \text { value } \\ & \text { Decision }\end{aligned} p=0.7921633394031113$
－You do not have to use integer values for the c_{i} terms，but it helps to avoid rounding issues．

SPECIAL CASE

－Comparing two means is just a special case where the contrast weights for those means are set to ± 1 and the other weights are set to 0 ：

```
To. set up a contrast, enter a weight value for each population mean such that the weights sum to 
```



```
O
Ma.
Run Contrast
Null hypothesis 
```



```
M,
Type I Irror rate \alpha=0.05
#
Standard error }\mp@subsup{s}{L}{}=64.67984426005096
Test staistic }t=5.85994357946605
l}\begin{array}{l}{\mathrm{ Degres of frecom df=407}}
p value }\quadp=9.569574910273104e-
l
```

－This gives the same result as we computed previously

MULTIPLE TESTING

－There are an enormous number of different contrasts that you could create
－If you require a significant ANOVA before running any contrasts，then you can control the Type I error rate to be no higher than α
－However，we have a new kind of＂conditional＂Type I error
－Given that the ANOVA indicates there is some difference in means， what means（or combinations of means）differ？For some contrasts the H_{0} is true，but，just due to random sampling，they indicate that there is a difference

MULTIPLE TESTING

－Thus，we have a new multiple testing problem for identifying the differences；even though we only get to that situation with probability α if the ANOVA omnibus H_{0} is true
－Worse，it could be that $\mu_{7} \neq \mu_{8}$ ，so you reject the ANOVA H_{0}
－but then you run contrasts for other means where $\mu_{i}=\mu_{j}$
－Generally，it is not a good idea to try all possible contrasts．Contrasts （and hypothesis testing in general）make the most sense when you have some specific plans to compare combinations of means

CONCLUSIONS

－interpreting an ANOVA
－identifying differences
－contrast tests
－power for ANOVA
－power for contrasts
Keep it simple！

HYPOTHESES

PSY 201: Statistics in Psychology
Lecture 34
Power for Analysis of Variance Keep it simple!

Greg Francis

Purdue University

Fall 2023

- The null for an ANOVA is an omnibus hypothesis. It suppose no difference between any population means

$$
H_{0}: \mu_{i}=\mu_{j} \forall i, j
$$

- the alternative is the complement

$$
H_{a}: \mu_{i} \neq \mu_{j} \text { for some } i, j
$$

- To compute power, we have to provide the standard deviation, α, n's, and specific values for the means

POWER CALCULATOR

- For other power calculators, it was kind of easy to identify how power is affected by the specific alternative:
- bigger differences (between population means, proportions, or correlations) leads to more power
- That is also true for ANOVA, but it can be more complicated because there are multiple means

Enter the Type I error rate, $\alpha=0.05$

- Consider a situation with $K=8$ means (one different from the others):
- We estimate the power to be 0.70688.
- Power is affected by the ratio of the variability between group means and the variability within each group ($\sigma=1$). If just one mean is different from the others, this ratio decreases as K gets bigger

Enter the oportaion tandard deviation $\sigma=10$ How many levels (groups) do you have in your
ANOVA? $K=$
bigger values produce better estimeteofs, but totione

Adda contrast tost
Power
for all 0.7068 C Calcuate o ower Caccuate minimum sample sizo
tests $=$

POWER CALCULATOR

- Consider a situation with $K=8$ means (four different from the others):
- We estimate the power to be 0.98324

Enter the Type I error rate, $\alpha=0.05$ Enter the population standard deviation, $\sigma=1.0$ How many levels (groups) do you have in your
ANOVA? $K=8$ Number of iterations
(bigger values produce better estimates, but take 100000

Level name	Population Mean	Sample size
Lovol1	10	25
Levol2	10	25
Lovel3	10	25
Lovol4	10	25
Lever	10.75	25
Levol6	10.75	25
Levol7	10.75	25
Levels	10.75	25

Add contrast test
Power
for all 0.0 .8324 Caltuate power Calcuate minimum samplo otzo
tests

POWER CALCULATOR

- Consider a situation with $K=4$ means (two different from the others):
- We estimate the power to be 0.88392
- Thus, it is not just that power decreases as K increases. It depends on the values of the means

Enter the Type I error rate, $\alpha=0.05$
Enter the population standard deviation, $\sigma=1.0$
How many levels (groups) do you have in your
How many levels (groups) do you have in your
ANOVA? $K={ }^{4}$
(bigger values produce better estimates, but take $\begin{aligned} & \text { Number of iteration }\end{aligned}$

Level name	Population Mean	Sample size
Level1	10	25
Lovol2	10	25
Level3	10.75	25
Lovola	10.75	25

[^1]
POWER CALCULATOR

- Consider a situation with $K=4$ means (every mean is different from the others):
- We estimate the power to be 0.62368
- The biggest and smallest means differ by 0.75 , just like previous cases, but that alone does not determine power

Enter the Type 1 error rate, $\alpha=0.05$
Enter the population standard deviation, $\sigma=1.0$ How many levels (groups) do you have in your
ANOVA? $K={ }^{4}$
(bigger values produce better estimates, but take 100000
(bigger values produce better estimates, but tale
longe)

Adda contrast tost
Power
for all

- With sufficient experience, you can learn to recognize what types of situations produce large (or small) power
- Until you get that experience, rely on the calculator (even after you get the experience you need the calculator to do the actual computations)
- It is still the case that larger samples lead to higher power.

TASKS

- Pleasantness: Rate the pleasantness of the word on a scale from 1 to 5.
- Imagery: Rate how easy it is to form a mental image of the word on a scale from 1 to 5 .
- Self-reference: Rate how easily the word brings to mind an important personal experience on a scale from 1 to 5 .
- Generation: Words are partially scrambled; unscramble and then rate the pleasantness of the word on a scale from 1 to 5. (e.g., "iktten")
- Survival: Rate the relevance of the word for survival if you are stranded in the grasslands of a foreign land, on a scale from 1 to 5 .
- Intentional learning: Try to remember the words for a future memory test.
- Different subjects are assigned to different conditions
- There are lots of mnemonic tricks to try to improve your memory. They really do work!
- To compare these tricks we can use a standard memory test (Nairne, Pandeirada \& Thompson, 2008):
- A subject is shown a word and asked to do some kind of task. This is repeated for 30 words.
- At the end of the experiment, the subject is asked to recall as many words as possible. Usually, this is a surprise memory task.
- For each subject, we compute the proportion of recalled words.
- We are interested in the mean value of the proportion across subjects.
- We can compare how well different tasks influence memory.

ORIGINAL RESULTS

- Nairne, Pandeirada \& Thompson (2008) found a big advantage for survival processing compared to the other methods. $n_{i}=50$ for each group

- $F_{5,294}=4.41, p=0.00178, M S_{W}=0.019$

NEW METHOD

- Suppose that you want to further explore these kinds of memory tricks. You think that the survival processing method does well because it gets subjects to be really engaged in thinking about the word. You come up with a new method
- Vacation: Rate the relevance of the word for enjoyment while on vacation at a fancy resort, on a scale from 1 to 5 .
- You expect that the vacation task will do about the same as the survival task
- You worry that other details of the experiment may change the overall level of performance for all tasks, so you decide to repeat the full study, with the addition of your new, Vacation, task. So there will be seven groups.
- How do you plan an appropriate sample size?

POWER FOR ANOVA

- Power is quite high (0.999) if we use $n_{i}=50$, as in the original study

Enter the Type l error rate, $\alpha=0.05$

Enter the Type I error rate, $\alpha=0.05$		
	Enter the populatio	on standard dev
How many levels (groups) do you have in your ANOVA? $K=$		
$\begin{gathered}\text { Number of iterations } \\ \text { (bigger values produce better estimates, but take longer) }\end{gathered}$ 5000		
Level name	Population Mean	Sample size
Sunvival	57	50
Pleasantros	0.49	50
Imagey	48	50
Solfreteronc	${ }^{46}$	50
Generation	${ }^{47}$	50
Imentionalle	${ }^{47}$	50
Vacation	${ }^{57}$	50

Adda contrast tost

$$
\begin{aligned}
& \text { Power } \\
& \text { for all } 0.099 \text { Calculate power } \text { Calcuate milimum sample size } \\
& \text { tests }=
\end{aligned}
$$

SPECIFIC MEANS

- As the values for the specific means, we can use the sample means found in the original study
- We get them from the figure
- For the Vacation task, we expect performance to be the same as the Survival task
- For the standard deviation, we can use the square root of $M S_{W}$

$$
\sigma=\sqrt{M S_{W}}=\sqrt{0.019}=0.1378
$$

- If we accept power of 0.9, $n=25$ subjects in each sample is sufficient

- If we accept power of 0.8 , $n=20$ subjects in each sample is sufficient

Enter the Type I error rate, $\alpha=0.05$ $\begin{aligned} & \text { Enter the population standard deviation, } \sigma=0.13 \\ & \text { How many levels (groups) do you have in your ANOVA? } K=7\end{aligned}$ How many levels (groups) do you have in your ANOVA? $K=$ (bigger values produce better estimates, but take tonger) $\begin{aligned} & \text { Number of tita } \\ & 5000\end{aligned}$ | Level name | Population Mean | Sample siz |
| :--- | :--- | :--- |

Add contrast toes

Power
forall
tests $=8$

CONTRASTS

	Enter Enter the pooulatio	or the Type I error rate, $\alpha=0.05$ on standard deviation, $\sigma=0.1378$
How many leves	ds (roups) do you h	have in your $A N O V A ? ~ K=?$
		Number ofiterations smo
Level name	Population Mean	Sample size
sumvas	5	
Plosantices	0.9	${ }^{27}$
imaear	4	
Solitateras	46	${ }^{27}$
Seneman	47	27
Ineritanele	47	${ }^{27}$
varaton	57	27
Adda commatast		
	Spocity hypoth	hoses for Contrast1
$\mathrm{H}_{0} 0$ 0 Lusma		
Hensatan+ ${ }^{\text {a }}$	Hineritoslearina + +s	5 Weasto $=0$
$\mathrm{H}_{\mathrm{a}}:$ Timetale	-	
a 0.05		
	Specity hypoth	heses tor Contrast2
H0: 5] Lesmat	+ 1 Lemeantrest	
Heneraten + +	Heneriocslearing +0	Wroston $=0$
H_{a} : Twotale	-	
a 0.05		
torall : 8	Caluesto power Cata	

NULL

- You might also want to demonstrate that memory performance is the same for the Survival and Vacation tasks (after all, your idea is that both tasks are engaging, so they should have similar performance)
- Unfortunately, hypothesis testing cannot show that two groups have equal means (that would be proving the null hypothesis)
- Thus, we cannot set a sample size so that we are sure the Survival and Vacation tasks are equally effective for improving memory

ANOTHER EXAMPLE

－Bushman（2018）investigated the＂weapons effect＂：the mere presence of weapons can increase aggression
－Subjects were assigned to view a set of images of one type：
－Criminals，Soldiers，Police in military gear，Police in regular gear， Olympians with guns，Police in plain clothes
－Afterwards，complete a word fragment task：
－ CHO ＿E
－KI
－MU－ ER
－C＿＿T
－each fragment can be completed to form an aggressive or non－aggressive word
－Count how many aggressive words are formed：measure of aggressive thoughts

DATA

－Roughly $n=100$ for each image set

EXAMPLE IMAGES

MANY TESTS

－Conclusions are based on many contrasts
－Significant ANOVA（some difference across image types）
－Contrast between people with guns vs．plainclothes police（no guns）： Weapon is important
－Contrast between Olympians vs．Others：Person must intend to hurt others
－Contrast between people with guns vs．Olympians：Weapon must be to hurt people
－Conclusion：only guns intended to shoot human targets prime aggressive thoughts

REPLICATION STUDY

- Suppose you want to replicate this study. To estimate power you use the means and standard deviation of the original finding. You want to see what happens if you use a similar sample size as the original study, $n=100$, for each sample
- We enter the information in the ANOVA Power calculator

REPLICATION STUDY

- We set up each of the contrast tests in the ANOVA Power calculator:


```
+0 Holympians + -4 HPolicePlainClothes =0
```

+0 Holympians + -4 HPolicePlainClothes =0
Ha: Two-tails O
Ha: Two-tails O
a 0.05
a 0.05
Specify hypotheses for Contrast2
Specify hypotheses for Contrast2
H0:1 H MCiminal + 1 H
H0:1 H MCiminal + 1 H
+-5 HOlymplans + 1 HPolicePlainClothes =0
+-5 HOlymplans + 1 HPolicePlainClothes =0
Ha: Two-tails
Ha: Two-tails
a 0.05
a 0.05
Specify hypotheses for Contrast3
Specify hypotheses for Contrast3
H0: 1 HMCriminal +
H0: 1 HMCriminal +

+ -4 HOlymplans + 0 HPolicePlainClothes =0
+ -4 HOlymplans + 0 HPolicePlainClothes =0
Ha: Two-talls o
Ha: Two-talls o
a 0.05

```
a 0.05
```

Enter the Type lerror rate, $\alpha=0.05$
How many levels (groups) do you have in your ANOVA? $K=$
How many levels (groups) do you have in your ANOVA? $K=6$
Number of terations
(bigger values produce better estimates, but take longer) ${ }^{\text {Num }}$

Level name	Population Mean	Sample size
Cinimal	7.1	100
Sodidies	6.65	100
Policomitar	6.8	100
Policoregut	6.7	100
Olymians	5.9	100
Policopalanc	5.95	100

REPLICATION STUDY

- When we hit the "Calculate power" button, we get:

Power for all tests $=$
Test Estimated Power ANOVA 0.6828 Contrast1 0.625 Contrast2 0.6456 Contrast3 0.666

- Each test has around a 65% chance of rejecting its H_{0}, but the probability of all tests rejecting the H_{0} for one set of samples is only around 40%.

ADJUSTING α

－When we hit the＂Calculate power＂button，we get：

－The power of the second contrast drops a bit．The other power estimates change，but that is just a side effect of the calculations．We could increase the number of iterations to avoid these changes．
－The power for all tests drops from 40% to around 33%

SIMPLE IS BETTER

－If your conclusion depends on many hypothesis tests producing significant results，you should design your study to take into account all of those tests
－Adding tests always lowers power
－Complicated experiments require much larger samples than simple experiments
－Lots of studies that are published are woefully underpowered because they do not consider these details of experimental design

SAMPLE SIZE

－How big a sample size do we need to have 80% power？
－$n=223$ ，which means a total of $6 \times 223=1338$ subjects
－The power values would be distributed across the tests as：

Power \qquad for all \qquad tests＝	2 Calculate power
Test	Estimated Power
ANOVA	0.9712
Contrast1	0.9266
Contrast2	0.8752
Contrast3	0.95

－power for ANOVA
－power for contrasts
－simple is better

- Dependent ANOVA
- Contrasts

Ignoring (some) variability.

PSY 201: Statistics in Psychology
 Lecture 35
 Analysis of Variance
 Ignoring (some) variability.
 Greg Francis
 Purdue University

Fall 2023

ANOVA TESTING

- 4 STEPS

(1) State the hypothesis. : $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{K}, H_{a}: \mu_{i} \neq \mu_{j}$ for some i, j.
(2) Set the criterion: α
(3) Compute the test statistic: $F=M S_{B} / M S_{W}$, degrees of freedom, and p-value
(4) Interpret results.

ASSUMPTIONS

- to use ANOVA for independent means validly, the data must meet some restrictions
- The observations are random and independent samples from the populations.
- The distributions of the populations from which samples are selected are normal.
- The variances of the distributions in the populations are equal. Homogeneity of variance.
- it turns out that
- independence of samples is critical
- violations of normality have small effects on Type I error rates
- violations of homogeneity of variance have a big effect if the population sizes are different
- similar to the standard t test
- means that ANOVA is robust as long as the sample sizes are the same across populations
- if we have only two groups

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

- we can use either ANOVA or the (standard) t-test discussed previously
- they give identical results!

t tests

- it turns out that the F distribution for $K-1, N-K(1, N-2)$ degrees of freedom is simply the t distribution for $N-2 d f$, squared.

$$
t^{2}=F
$$

- so using either technique produces the same results (reject or not reject)

EXAMPLE

- A sociologist wants to determine whether sorority or dormitory women date more often. He randomly samples 12 women who live in sororities and 12 women who live in dormitories and determines the number of dates they each have during the ensuing month. The following are the results.

| Sorority
 Women,x_{1} |
| :---: | :---: | | Dormitory |
| :---: |
| Women, X_{2} |,

－test with $\alpha=0.05$ ，two－tailed

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{a}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

－we have equal numbers of subjects，so we do not need to worry about homogeneity of variance
－from data we calculate the pooled estimate of population variance

$$
s^{2}=5.570
$$

ANOVA
－The same hypotheses work for an ANOVA

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

－we can calculate

$$
\begin{gathered}
S S_{B}=6.00 \\
S S_{W}=122.500
\end{gathered}
$$

t TEST
－so standard error is
－and

$$
\begin{gathered}
s_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
{ }^{s_{\bar{X}_{1}-\bar{X}_{2}}=0.963} \\
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s_{\bar{X}_{1}-\bar{X}_{2}}} \\
d=\frac{1.0}{0.963}=1.038 \\
d f=n_{1}+n_{2}-2=12+12-2=22
\end{gathered}
$$

－From the t－distribution calculator，we find

$$
p=0.3105>0.05=\alpha
$$

－so do not reject H_{0}
－no evidence for a difference in number of dates

ANOVA

$$
\begin{gathered}
M S_{B}=\frac{S S_{B}}{K-1}=\frac{6.00}{1}=6.00 \\
M S_{W}=\frac{S S_{W}}{N-K}=\frac{122.500}{22}=5.568 \\
F=\frac{M S_{B}}{M S_{W}}=\frac{6.00}{5.568}=1.078
\end{gathered}
$$

－we have $1 d f$ in the numerator and $22 d f$ in the denominator，and we use the F－distribution calculator to find

$$
p=0.31042>0.05=\alpha
$$

－we do not reject H_{0}
－note：

$$
F=1.078 \approx 1.077=(1.038)^{2}=t^{2}
$$

－one way ANOVA deals with independent samples
－we want to consider a situation where all samples are＂connected＂
－e．g．，tracking health patterns for a common set of patients across years；grades for a common set of students throughout school
－Often called a within subjects ANOVA or a repeated measures ANOVA
－there can be other kinds of dependencies
－e．g．，IQ of first－born，second－born，and third－born siblings
－scores for an＂individual＂are dependent
－scores for different＂individuals＂are independent

$$
S S_{T}=S S_{I}+S S_{O}+S S_{R e s}
$$

－where
－$S S_{T}$ is the total sum of square
－$S S_{\text {I }}$ is the variation among individuals
－$S S_{O}$ is the variation among test occasions
－$S S_{\text {Res }}$ is any other type of variation

INDIVIDUALS

－the combined variation among individuals is

$$
S S_{I}=\sum_{i} K\left(\bar{X}_{i}-\bar{X}\right)^{2}
$$

－where

$$
\bar{X}_{i}=\frac{\sum_{k} X_{i k}}{K}
$$

－is the average for the ith individual across all observations
－$S S_{I}$ deviation of individual means from overall mean
－does not correspond to $S S_{W}$ or $S S_{B}$ in the normal ANOVA
－we want to ignore this variability

OBSERVATIONS

－the combined variation across observations is

$$
S S_{O}=\sum_{k} n\left(\bar{X}_{k}-\bar{X}\right)^{2}
$$

－where

$$
\bar{X}_{k}=\frac{\sum_{i} X_{i k}}{n}
$$

－is the average for the k th observation across all subjects
－$S S_{O}$ deviation of observation mean from overall mean
－similar to $S S_{B}$ in the independent ANOVA

RESIDUAL

－we need a term that corresponds to $S S_{W}$
－we can directly calculate the total sum of squares

$$
S S_{T}=\sum_{k} \sum_{i}\left(X_{i k}-\bar{X}\right)^{2}
$$

－if there is variation beyond $S S_{I}$ and $S S_{O}$ ，we can calculate it as

$$
S S_{R e s}=S S_{T}-S S_{I}-S S_{O}
$$

－this is similar to $S S_{W}$
－factors out variation due to individuals and variation due to observations

VARIANCE ESTIMATES

－$S S_{O}$ can vary due to random sampling，or due to differences across observations
－if H_{0} is true

$$
H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{K}
$$

－then there are no population differences across observations，so all variation must be due to random sampling．So，

$$
M S_{O}=\frac{S S_{O}}{K-1}
$$

－estimates the variance of the population distribution if H_{0} is true －otherwise it overestimates it

VARIANCE ESTIMATES

－$S S_{\text {Res }}>0$ due to random sampling（choice of individuals）

$$
M S_{R e s}=\frac{S S_{R e s}}{(K-1)(n-1)}
$$

－estimates the variance of the population distribution
－the degrees of freedom associated with this estimate is

$$
(K-1)(n-1)
$$

F RATIO

－as before we compare these estimates with the F statistic

$$
F=\frac{M S_{O}}{M S_{R e s}}
$$

－if H_{0} is true

$$
F \approx 1.0
$$

－if H_{0} is not true

$$
F>1.0
$$

－look up p value using $(K-1)$ and $(K-1)(n-1)$ degrees of freedom
－everything else is the same as before

- A school principal traces reading comprehension scores on a standardized test for a random sample of dyslexic students across three years. The data are given below. Complete the ANOVA using $\alpha=0.05$.

Student	Third Grade	Fourth Grade	Fifth Grade
1	2.8	3.2	4.5
2	2.6	4.0	5.1
3	3.1	4.3	5.0
4	3.8	4.9	5.7
5	2.5	3.1	4.4
6	2.4	3.1	3.9
7	3.2	3.8	4.3
8	3.0	3.6	4.4

(2) TEST STATISTIC

- It turns out that

$$
S S_{T}=18.66
$$

and

$$
S S_{I}=5.67
$$

and

$$
S S_{O}=12.0858
$$

- so any remaining variation is residual

$$
\begin{gathered}
S S_{\text {Res }}=S S_{T}-S S_{I}-S S_{O} \\
S S_{\text {Res }}=18.66-5.67-12.09=0.9075
\end{gathered}
$$

- this cannot be negative!

(1) HYPOTHESIS

$$
\begin{gathered}
H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
H_{a}: \mu_{i} \neq \mu_{k} \text { for some } i \text { and } k
\end{gathered}
$$

- use $\alpha=0.05$
(2) TEST STATISTIC
- now calculate

$$
M S_{O}=\frac{S S_{O}}{K-1}=\frac{12.0858}{2}=6.0429
$$

- and

$$
M S_{R e s}=\frac{S S_{R e s}}{(K-1)(n-1)}=\frac{0.9075}{14}=0.0648
$$

- and get the F statistic

$$
F=\frac{M S_{O}}{M S_{R e s}}=\frac{6.0429}{0.0648}=93.22
$$

(3) P-VALUE

- for the numerator (observation sum of squares) we have

$$
d f=K-1=3-1=2
$$

- for the denominator (residual sum of squares) we have

$$
d f=(K-1)(n-1)=(3-1)(8-1)=14
$$

- so from the F-distribution calculator, we find the $F=93.22$ corresponds to

$$
p \approx 0.000<0.05=\alpha
$$

(4) DECISION

- we reject H_{0}.
- there is evidence that the reading scores for these subjects are different across the years

CALCULATORS

- No one does these computations by hand. Computer programs do it for you. Your text provides a Dependent ANOVA One-Way
calculator.
- You have to format the data correctly

CALCULATORS

- Extra information is important for interpreting the results
- means, correlations
- Not always reported, but should be

Summary table

Condition	Mean	Standard deviation	Sample size
ThirdGrade	2.9250	0.4559	8
FourthGrade	3.7500	0.6392	8
FifthGrade	4.6625	0.5680	8

Correlation table

	ThirdGrade	FourthGrade	FifthGrade
ThirdGrade	1.0000	0.8383	0.6826
FourthGrade	0.8383	1.0000	0.8912
FifthGrade	0.6826	0.8912	1.0000

CONTRASTS

－We set up contrast weights，c_{i} ，for each sample
－Our null hypothesis will be

$$
H_{0}: \sum_{i=1}^{K}\left(c_{i} \mu_{i}\right)=0
$$

－and we require that the contrast weights sum to 0 ：

$$
\sum_{i=1}^{K} c_{i}=0
$$

－Our alternative hypothesis is

$$
H_{a}: \sum_{i=1}^{K}\left(c_{i} \mu_{i}\right) \neq 0
$$

－（one－tailed tests are also possible）

CALCULATORS

－A one－tailed contrast to compare scores in Third Grade against scores in Fourth Grade

Specify hypotheses：		
$\mathrm{H}_{0}:-1 \quad \mu_{\text {ThirdGrade }}+{ }^{1}$	$\mu_{\text {fourth }}$ Grade +0	$\mu_{\text {FifthGrade }}=0$
Ha_{a} ：Positive one－tail		
$\alpha 0.05$		
Run Contrast		
Contrast test summary		
Null hypothesis	$\mathrm{H}_{0}:(-1) \mu_{\text {ThirdGrade }}+(1) \mu_{\text {Fourth }}{ }_{\text {rade }}+(0) \mu_{\text {FifthGrade }}=0$	
Alternative hypothesis	$\mathrm{H}_{\mathrm{a}}:(-1) \mu_{\text {ThirdGrade }}+(1) \mu_{\text {FourthGrade }}+(0) \mu_{\text {FifthGrade }}>0$	
Type I error rate	$\alpha=0.05$	
Weighted sum of sample means $L=0.8250$		
Standard error	$s_{L}=0.1273$	
Test statistic	$t=6.4807$	
Degrees of freedom	$d f=14$	
p value	$p=0.00001$	
Decision	Reject the null hypothesis	

TEST STATISTIC

－We compute the weighted sum of means

$$
L=\sum_{i=1}^{K}\left(c_{i} \bar{X}_{i}\right)
$$

－which has a standard error of：

$$
s_{L}=\sqrt{M S_{\operatorname{Res}} \sum_{i=1}^{K} \frac{c_{i}^{2}}{n}}
$$

－and our test statistic is

$$
t=\frac{L}{s_{L}}
$$

－which follows a t distribution with

$$
d f=(K-1)(n-1)
$$

－where N is the sum of sample sizes across all groups and K is the number of groups

CALCULATORS

－A one－tailed contrast to compare scores in Fourth Grade against scores in Fifth Grade

Specify hypotheses：		
$\mathrm{H}_{0}: 0 \quad \mu_{\text {ThirdGrade }}+-1$	$\mu_{\text {fourbGrade }}+1$	$\mu_{\text {FifthGrade }}=0$
H_{a} ：Positive one－tail ©		
$\alpha 0.05$		
Run Contrast		
Contrast test summary		
Null hypothesis	$\mathrm{H}_{0}:(0) \mu_{\text {ThirdGrade }}+(-1) \mu_{\text {FourthGrade }}+(1) \mu_{\text {FifthGrade }}=0$	
Alternative hypothesis	$\mathrm{H}_{\mathrm{a}}:(0) \mu_{\text {ThirdGrade }}+(-1) \mu_{\text {FourthGrade }}+(1) \mu_{\text {FifthGrade }}>0$	
Type I error rate	$\alpha=0.05$	
Weighted sum of sample means $L=0.9125$		
Standard error	$s_{L}=0.1273$	
Test statistic	$t=7.1681$	
Degrees of freedom	df＝14	
p value	$p=0.00000$	
Decision	Reject the null hypothesis	

- ANOVA for dependent measures depends on four assumptions
- The sample was randomly selected for a population.
- The dependent variable (e.g., reading scores) is normally distributed in the population.

औ deviations tend to not cause serious problems

- The population variances for the test occasions are equal. (homogeneity of variance)
\star Can be compensated for sometimes
- The population correlation coefficients between pairs of test occasion scores are equal.
\star Can be compensated for sometimes
- assumptions of one-way independent ANOVA
- ANOVA for dependent measures
- contrasts for dependent ANOVA
- assumptions of dependent ANOVA

NEXT TIME

- power for dependent ANOVA

Leverage relationships.

PSY 201: Statistics in Psychology
Lecture 36
Power for Dependent ANOVA Leverage relationships.

Greg Francis
Purdue University
Fall 2023

HYPOTHESES

- The null for a dependent ANOVA is an omnibus hypothesis. It supposes no difference between any population means

$$
H_{0}: \mu_{i}=\mu_{j} \forall i, j
$$

the alternative is the complement

$$
H_{a}: \mu_{i} \neq \mu_{j} \text { for some } i, j
$$

- To compute power, we have to provide the standard deviation, α, n specific values for the means, and the correlation (ρ) between the different measures

INDEPENDENT CALCULATOR

- Since we have $\rho=0$, the means are independent. Thus, we get nearly the same result with the independent means power calculator

$$
\begin{aligned}
& \text { Adda contrast test }
\end{aligned}
$$

- We estimate the power to be 0.46
- when $\rho=0$, the independent and dependent ANOVA are almost the same test

POWER CALCULATOR

- Consider a situation with $K=3$ dependent means (all different from each other), $n=25$, and $\rho=0$:

- We estimate the power to be 0.45

DEPENDENT POWER CALCULATOR

- Increasing the correlation increases the power
- Consider a situation with $K=3$ dependent means (all different from each other), $n=25$, and $\rho=0.3$:

- We estimate the power to be 0.6

DEPENDENT POWER CALCULATOR

- Consider a situation with $K=3$ dependent means (all different from each other), $n=25$, and $\rho=0.6$:

- We estimate the power to be 0.85

DEPENDENT POWER CALCULATOR

- Positive correlations are easy to imagine:
- e.g., reading scores in third, fourth, and fifth grades are positively correlated with each other
- It is plausible that the correlations are (nearly) the same for all variables
- Negative correlations for all variables would be weird
- e.g., GPA for athletes over three different sports seasons
- kind of suggests multiple factors influencing behavior
- for three measures, a negative correlation can be no stronger than $\rho=-0.5$
- the calculator will take your negative correlation and try to do something, but be skeptical about the results

DEPENDENT POWER CALCULATOR

- Consider a situation with $K=3$ dependent means (all different from each other), $n=25$, and $\rho=0.9$:

- We estimate the power to be 1.0

NEGATIVE CORRELATIONS

- Consider a situation with $K=3$ dependent means (all different from each other), $n=25$, and $\rho=-0.2$:

Enter the Type I error rate, $\alpha=0.05$	
Enter the population standard deviation,	
	ter the population cors
How many levels (groups) do you have in your ANOVA? $K=3$	
(bigger values produce better estimates, put take longer) ${ }^{\text {N }}$ (${ }^{\text {amboo }}$	
Leve name	Population Mean
Lovol	10.9
Level2	10.7
Level	${ }^{11.3}$

Add a contrast tost

$$
\text { Sample size } n=25 \quad \text { Calculate power }
$$

- We estimate the power to be 0.38 (worse than when $\rho=0$)

OBJECT BASED ATTENTION

- The eye is (kind of) like a camera, with photoreceptors that are similar to pixels in a camera
- However, what people see corresponds to objects that are somehow "grouped" together
- We can select and attend some objects to the exclusion of other objects
- One way of measuring this property of visual perception is to study the "object based attention" effect

OBJECT BASED ATTENTION

- Measure reaction time (RT) to the target
- Dependent design: each subject provides data for 3 types of targets

REPLICATION

- The study was done 15 years ago (before everyone spent all day staring at a phone). You might want to repeat it with current students to make sure the object based attention effect still exists.
- To design your experiment, you can use the original data to do a power analysis. It takes a bit of effort, but you find that the data has:

$$
\begin{gathered}
\bar{X}_{\text {Valid }}=291, \quad \bar{X}_{\text {InvalidSame }}=327, \quad \bar{X}_{\text {InvalidDifferent }}=341 \\
s=45.5, \quad r=0.95
\end{gathered}
$$

- ANOVA finds: $F_{2,36}=100.63, p \approx 0$
- Contrast for RT on valid trials vs. RT on invalid-same trials: $t_{36}=11.76$
- Contrast for RT on invalid-same trials vs. RT on invalid-different trials: $t_{36}=4.13$ (this is the object based attention effect)

POWER CALCULATOR

- For just the ANOVA

Adda contrast tost

$$
\begin{aligned}
& \begin{array}{c}
\text { Power for all } \\
\text { tests }= \\
0.9 \text { Calculate minimum sample sizo }
\end{array} \\
& \text { Sample size } n=3 \quad \text { Calculte power }
\end{aligned}
$$

- To have 90% power, we need only 3 subjects (if the effects are similar to the original study)

CORRELATION

- The original study found $r=0.95$, which seems rather high. Maybe we think it should be smaller, say $r=0.75$.
- What is the impact on power if we use $n=12$?
- Power drops to 0.28 !

- We can add the contrasts:
- Now, we need $n=12$ to get 90% power

Enter the Typel error rate, $a=0.03$
Enter the population standard doviation, $\sigma=4.45 .5$ Enter the poopuation corereation between levevs, $\rho=0.95$
How many evels (gruus) do you have in your ANOVAD $K=1$ How many levels (groups) do you have in your ANOVA? $K=0$
Number of tieaitinnse 5 sooe
(biger values produce better estimates, but take longen)

> Acos cocortast lext

Speciif hypootheses for Contrast1

H_{a} : Theorats
Specify hypotheses for Contrast2

H_{a} Theraite

CORRELATION

- The original study found $r=0.95$, which seems rather high. Maybe we think it should be smaller, say $r=0.75$. What sample size do we need to have 90\% power?
- Need $n=56$! The correlation makes a big difference in dependent means experiments

Enter the Type I error rate, $\alpha=0.05$ Enter the population standard deviation, $\sigma=45.5$
Enter the population correlation between levels, $\rho=0.75$ How many levels (groups) do you have in your ANOVA? $K=3$

Level name	Population Mean
Vald	291
Invalisame	${ }_{327}$
Invalicilteren	341

Specify hypotheses for Contrast1

```
\(\mathrm{H}_{0}: 1 \quad \mathrm{Ha}_{\text {vald }}+-1\)
Ha: Two -alals 0
0.05
```



```
\(H_{\text {a }}\) : Two tals 0
a 0.05
```


CONCLUSIONS

NEXT TIME

- power for dependent ANOVA
- power for contrasts
- Catch all
- Challenges with hypothesis testing
- Questionable Research Practices

Tell the truth!

PSY 201: Statistics in Psychology
Lecture 37
Catch all
Tell the truth!

Greg Francis

Purdue University
Fall 2023

- It is important that you are honest about what happened in an experiment and in its analysis
- To yourself
- To other researchers
- "The first principle is that you must not fool yourself - and you are the easiest person to fool." Richard Feynman
- Let's look at several ways you can fool yourself
- Optional stopping
- Pilot studies
- HARKing
- Hypothesis testing is a procedure that controls the Type I error rate
- It works when we know the sampling distribution for the null hypothesis
- The sampling distribution depends on the sample size, so we have to know that
- Seems trivial, just see how many subjects you have
- But no.
- The sample size that matters is how many subjects you would run if you repeated the experiment many times
- Surprisingly, many people do not know how many subjects they would run if the experiment were repeated

OPTIONAL STOPPING

- Suppose you run a between subjects test of means with $n_{1}=n_{2}=25$

$$
t=2.0
$$

which gives

$$
p=0.0512
$$

- Some people call this a "marginally significant" result, meaning it is close to the $\alpha=0.05$ criterion
- This is nonsense, what you have is a non-significant result
- You do not get to conclude anything
- But you might think that the results are suggestive, so you run 10 more subjects in each group. Now, with $n_{1}=n_{2}=35$, you get

$$
\begin{gathered}
t=2.2 \\
p=0.0312
\end{gathered}
$$

- What is the Type I error rate for this kind of procedure?

OPTIONAL STOPPING

－In fact，you have to know what you would do for every（infinitely many）possible situations
－If you are willing to keep adding subjects until you get a significant result，your Type I error rate is 1.0 ！
－The best way out of this problem is to fix a sample size and stick to it．This is best done with a good power analysis before gathering any data．
－If that is not possible，then honestly describe what was done． Describe each test and explain why subjects were added．

PILOT STUDIES

－What sometimes happens is people interpret the difference between significant and non－significant results as indicating methodological differences：
－One banana does not improve memory（warning：accepting the null！）
－Two bananas does improve memory
－But both of these studies also involve random sampling
－A null effect might produce a Type I error
－A real effect might not produce a significant result（Type II error）
－It is dishonest to run tests like these and not report the results，even if you think you can explain why a study＂failed＂

PILOT STUDIES

－When investigating a new topic，it is common to run multiple experiments while identifying what to measure and how to do it
－For example，suppose you want to study the effect of eating bananas on recall of words
－There are lots of variables to consider
－How many bananas？
－How long after eating do you study words？
－How long after eating do you test？
－What kind of words do you use？
－You can explore hundreds of these variables to find a combination that shows an effect
－It might be tempting to use statistical significance to decide whether a study＂works＂
－Don＇t do it！

PILOT STUDIES

－If you only report successful studies（publication bias），it becomes impossible for other scientists to interpret the Type I error rate of your results
－They do not know if you are reporting the only result you tested for
－Or if you are reporting one study out of dozens of others that did not work
－Your best bet is to figure out how to run a good study and then do it once．
－Easier said than done
－You might spend years figuring out how to run a good study
－Hypothesizing After the Results are Known
－You sometimes learn a lot after looking at your data
－Sometimes scientists look at the data then identify hypotheses that match the results
－Sometimes scientists then＂pretend＂that they predicted the outcome and write up their paper accordingly
－Don＇t do this．It is fraud．
－Just be honest and explain that you learned from your findings．

HARKing

－Be careful about what you learn，though
－You might run a study on eating bananas and word memory and sift through a large set of subjects to find a subset that shows an effect
－Age：Young，Middle，Old
－Sex：male，female
－Socioeconomic status：quartile
－Religious affiliation：Christian，Muslim，Jewish，Atheist，Buddhists， Other
－Maybe you find：
－A significant improvement for Young，male，25th percentile SES， Buddhists
－A significant decrement for Young，female，75th percentile SES， Christians
－A significant increment for Young，female，10th percentile SES， Atheists
－A significant decrement for Old，female，25th percentile SES，Jews

IN THE WILD

－Scientists do these kinds of＂questionable research practices＂all the time
－Often unintentionally
－They just do not know any better
－This is why you hear so much conflicting advice on some topics
－Chocolate is good for you／chocolate is bad for you
－A glass of wine a day is good for you／no it＇s not
－Take statins to improve your health／they seem to do nothing
－This is why you sometimes see nonsense published in journals
－People can get information from the future
－Eating breakfast makes a woman more likely to have a boy baby
－Women find men wearing red shirts to be more attractive
－Hypothesis testing（and statistics in general）is not synonymous with science
－Science is about identifying mechanisms to explain why things happen the way they do
－Hypothesis testing（at best）prevents misinterpretations of signal for noise，but that is not enough to identify mechanisms
－At best，statistics is a check on interpreting noise as if it were signal
－At worst，statistics is a way of＂validating＂noise as if it were a signal
－In some sense，the best science does not require statistics
－Good science is difficult to do well
－There are lots of ways to＂cheat＂hypothesis testing
－People actually do cheat
－Be skeptical about published work
－Use some common sense！

NEXT TIME

－Review for the final exam

[^0]: Greg Francis (Purdue University)

[^1]: Add contrast toes

 Power
 for all 0.0 .8392
 tests $=$ Calculater o owor Calculato mininum samplo sizo

