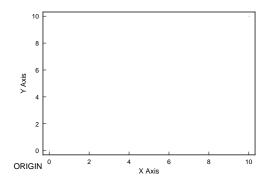
PSY 201: Statistics in Psychology Lecture 03 Plots Why the space shuttle blew up.

Greg Francis

Purdue University

Fall 2023

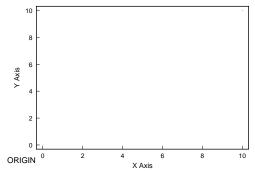

DATA

GOAL:

- organize data in a way that helps us understand it
- often take advantage of visual interpretations
- particularly important for very large sets of data

★ ∃ ►

GRAPHS



• plot one variable against another

Fall 2023 3 / 37

PLOTTING

- you make a graph to convey information
- place the dependent variable on the *y*-axis and the independent variable on the *x*-axis

• avoid everything else that might get in the way!

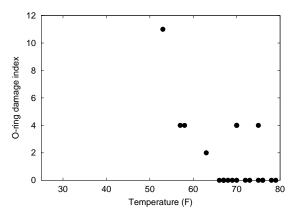
SPACE SHUTTLE

- January 28, 1986
- O-ring leaked
- the Challenger exploded 59 seconds after liftoff

(4) (5) (4) (5)

SPACE SHUTTLE

- January 28, 1986
- O-ring leaked
- the Challenger exploded 59 seconds after liftoff



SPACE SHUTTLE

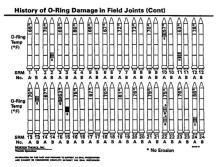
- \bullet the night before engineers warned O-rings would leak in cold (29°) weather
- the engineers failed to make their case, and the shuttle blew up
- they failed to present their data in a way to convince others

THE DATA

 previous launches showed damage to the O-rings increased as temperature got colder

THE MISTAKES

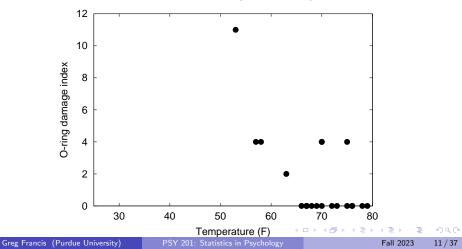
- when trying to convince NASA scientists to cancel the liftoff engineers:
 - used tables (not bad by itself, but a graph is often more convincing)


HISTORY OF O-RING TEMPERATURES (DEGREES - F)					
MOTOR	MBT	AMB	O-RING	WIND	
Dm-+	68	36	47	IO MPH	
Dm - 2	76	45	52	10 mpH	
Qm - 3	72.5	40	48	10 mpH	
Qm - 4	76	48	51	10 m PH	
SRM-15	52	64	53	10 mpt	
5RM-22	77	78	75	10 mpH	
SRM-25	55	26	29	IO MPH	
			27	25 MPH	

distributed information across several tables

(日) (四) (日) (日) (日)

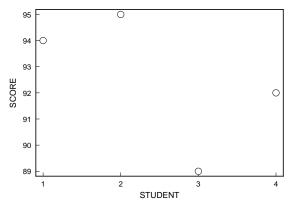
THE MISTAKES


- when trying to convince NASA scientists to cancel the liftoff engineers:
 - cluttered graphics with irrelevant information (motor type, date of launch,...)

(4) (3) (4) (4) (4)

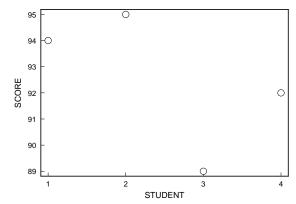
THE MISTAKES

- when trying to convince NASA scientists to cancel the liftoff engineers:
 - failed to point out that all good launches were in warm temperatures
 - ▶ failed to point out that the forecasted temperature (29°) was much colder than for any other launch (good or bad)



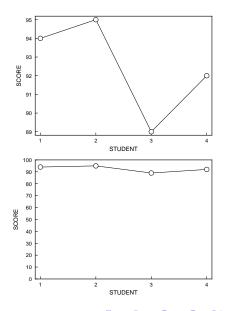
THE LESSON

- when trying to convince someone of something, you must present it properly
- avoid fancy graphics and 3D perspectives
- keep it simple
- present the right information
- we will go over some basics of graphing...


GRAPH

• using a small data set of four student's grades

GRAPH

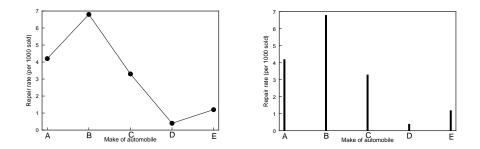

• using a small data set of four student's grades

- what measurement scale is the student variable?
- what measurement scale is the score variable?

DATA CURVE

- it sometimes helps to connect the points
- How well did the third student do?
- changing the axis' scale makes the information look different, even though it isn't
- what matters is whether the graph conveys the intended information!

GRAPH TYPE


- type of data often determines what type of graph to draw
- previous graph plotted ratio (or interval) data against nominal data
- consider the following data

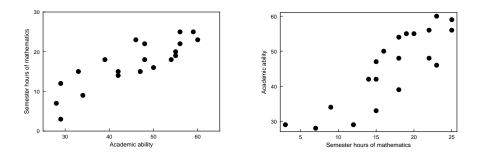
Make of	Repair Rate		
Automobile	(per 1000 sold)		
A	4.2		
В	6.8		
C	3.3		
D	0.4		
E	1.2		

• the graph should **not** suggest continuity of automobile make

(4) (5) (4) (5)

WHICH IS BETTER?

イロト イヨト イヨト イヨト


SCATTERGRAMS

• sometimes you want to look at co-occurrences of data

	Academic	Hours of
Student	Ability Score	Mathematics
1	54	18
2	29	3
3	42	14
4	60	23
5	33	15
6	28	7
7	56	22
8	48	18

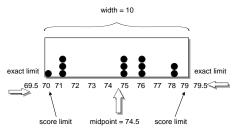
< □ > < 同 > < 回 > < 回 > < 回 >

SCATTERGRAMS

< □ > < □ > < □ > < □ > < □ >

GRAPHS

- Very useful for giving an overview of many types of data sets
- Useful for identifying trends in the data and relationships between variables
- Limited in that they depend on the viewer's interpretive abilities and sometimes graphs breakdown for really big or really small data sets
- We prefer more quantitative approaches


FREQUENCY

- for large data sets we cannot present all the scores
- we often look at the *number* or *frequency* of scores within certain limits
- we look at how scores are spread out across different values
- this reduces the number of *presented* scores and improves understanding

CLASS INTERVAL

Terminology

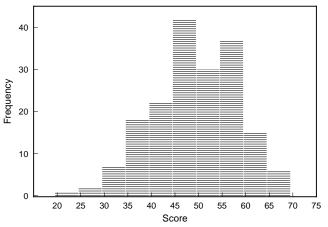
- width: exact upper limit exact lower limit
- midpoint: value halfway between upper limit and lower limit
- exact limits: exact boundaries of interval
 - matter when we start to work with frequency distributions!
- score limits: highest and lowest possible scores that fall in the interval

FREQUENCIES

- compare a set of scores
 95, 22, 45, 45, 12, 79, 83, 46, 89, 96, 75, 33, 86, 57, 69, 94, 83, 75, 77, 88, 92, 85, 31, 69
- to frequencies

Class Interval	f
10–19	1
20–29	1
30–39	2
40–49	3
50–59	1
60–69	2
70–79	4
80–89	6
90–99	4

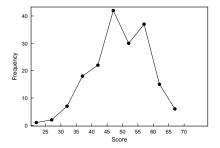
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

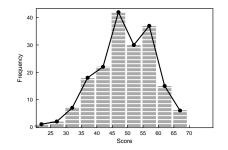

FREQUENCIES

ADVANTAGES

- easier to see distribution of scores
- easier to interpret data
- DISADVANTAGES
 - loss of information
 - individual scores are missing
 - midpoint score is often best guess
- often use frequency information to **supplement** other information (depends on your needs)

HISTOGRAMS


frequency versus score class interval

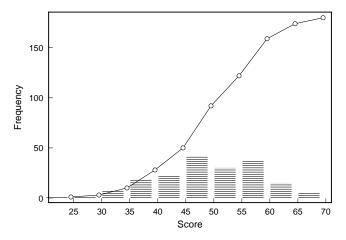


< ⊒ >

< 行

FREQUENCY POLYGON

< □ > < □ > < □ > < □ > < □ >


◆ ■ ▶ ■ のへの Fall 2023 25 / 37

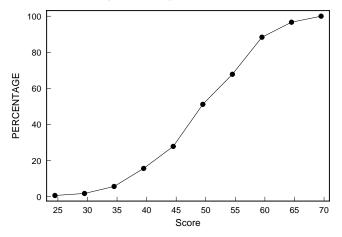
CUMULATIVE FREQUENCIES

- frequency distribution tells us how many scores in each class interval
- cumulative frequency distribution tells us how many scores in all class intervals below a specific score

Midpoint	f	cf
67	6	180
62	15	174
57	37	159
52	30	122
47	42	92
42	22	50
37	18	28
32	7	10
27	2	3
22	1	1

CUMULATIVE FREQUENCY DISTRIBUTION

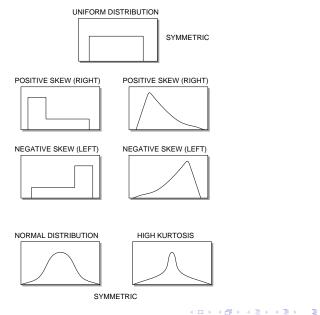
Note: the point on the polygon has it's x-coordinate at the upper limit of the corresponding class interval


PERCENTAGES

	Midpoint	f	cf	%	с%
	67	6	180	3.33	100
	62	15	174	8.33	96.67
% = <u>frequency</u>	57	37	159	20.56	88.34
$7_0 = \frac{1}{\text{total number of scores}}$	52	30	122	16.67	67.78
	47	42	92	23.33	51.11
	42	22	50	12.22	27.78
$c\% = \frac{\text{cumulative frequency}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	37	18	28	10.00	15.56
$\frac{1}{1000}$ total number of scores	32	7	10	3.89	5.56
	27	2	3	1.11	1.67
	22	1	1	0.56	0.56

A D N A B N A B N A B N

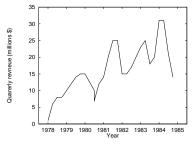
OGIVE

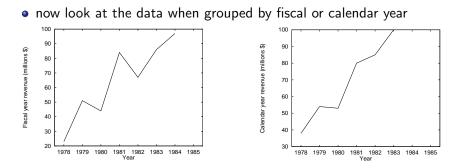

- plot cumulative frequency percentage against upper score class interval
- gives percentile points (next time)

FREQUENCY DISTRIBUTIONS

- useful to compare shapes
- any shape is possible
- some shapes are particularly important
 - uniform distribution
 - skewed distribution (long tail)
 - symmetric distribution
 - normal distribution
 - kurtosis (peakedness)

< ∃ ▶




Greg Francis (Purdue University)

SY 201: Statistics in Psychology

Fall 2023 31 / 37

- with large data sets you *have* to group data together to make it manageable
- how you do it can sometimes have a profound effect on what people conclude
- consider revenue from a company: grouped by *quarterly* revenue

Fall 2023 33 / 37

- with computers people can now sift through huge amounts of data and present only those graphs that support what they want you to think
- a suspicious person might presume that the graphs you *do* see are the *best possible* for advancing the presenter's view
- the only way out of this is to either trust the presenter, or have access to the data and and knowledge to understand it

HONESTY

- so how you define class intervals can determine how you (or someone else) will interpret the data
- statistics don't lie (they are just numbers)
- but you could (and some people do) select certain statistics to make people believe one thing versus another
- the only thing you can do about this effect is to be aware that it exists
- you need to be aware of the limitations of the data and be on guard against things that might influence you

CONCLUSIONS

- graphing
- frequencies
- distributions
- remember: the goal is to correctly present information

NEXT TIME

- percentiles
- percentile ranks
- How to score the SAT.

A D N A B N A B N A B N