PSY 201: Statistics in Psychology
 Lecture 06
 Variability

How to make IQ scores look good.

Greg Francis

Purdue University

Fall 2023

DESCRIPTION

- central tendency gives an indication of where most, many, or average, scores are
- also want some idea of how much variability exists in a distribution of scores
- range
- mean deviation
- variance
- standard deviation

RANGE

- Highest score - lowest score

Name	Sex	Score
Greg	Male	95
lan	Male	89
Aimeé	Female	94
Jim	Male	92

- $95-89=6$

PROBLEM

- range is very sensitive to "extreme" scores

Name	Sex	Score
Greg	Male	95
lan	Male	89
Aimeé	Female	94
Jim	Male	92
Bob	Male	32

- 95-32 = 63
- one score makes a big difference!

MEAN DEVIATION

- we can decrease sensitivity to extreme scores by considering deviations from a measure of central tendency
- a deviation score is

$$
x_{i}=X_{i}-\bar{X}
$$

- we define the mean deviation as:

$$
\mathrm{MD}=\frac{\Sigma\left|X_{i}-\bar{X}\right|}{n}=\frac{\Sigma\left|x_{i}\right|}{n}
$$

- where $\left|x_{i}\right|$ means: "absolute value of x_{i} "
- why do we take the absolute value instead of just summing deviations?

VARIANCE

- mean deviation turns out to be mathematically messy
- squaring also removes minus signs!
- sum of squares

$$
\mathrm{SS}=\Sigma\left(X_{i}-\bar{X}\right)^{2}=\Sigma\left(x_{i}\right)^{2}
$$

- variance is the average sum of squares
- calculation depends on whether scores are from a population or a sample

POPULATION

- a population includes all members of a specified group
- variance is defined as:

$$
\sigma^{2}=\frac{S S}{N}=\frac{\Sigma\left(X_{i}-\mu\right)^{2}}{N}=\frac{\Sigma\left(x_{i}\right)^{2}}{N}
$$

- where
- μ is the mean of the population
- N is the number of scores in the population

SAMPLE

- a sample includes a subset of scores from a population
- variance is defined as:

$$
s^{2}=\frac{S S}{n-1}=\frac{\Sigma\left(X_{i}-\bar{X}\right)^{2}}{n-1}=\frac{\Sigma\left(x_{i}\right)^{2}}{n-1}
$$

- where
- \bar{X} is the mean of the sample
- n is the number of scores in the sample
- why the differences? Don't worry for now. Just know the calculations.

SAMPLE VARIANCE

- deviation formula:

$$
s^{2}=\frac{\Sigma\left(x_{i}\right)^{2}}{n-1}
$$

- alternative (but equivalent) calculation is the raw score formula

$$
s^{2}=\frac{S S}{n-1}=\frac{\Sigma\left(X_{i}\right)^{2}-\left[\left(\Sigma X_{i}\right)^{2} / n\right]}{n-1}
$$

- use whichever formula is simpler!

EXAMPLE

Name	Sex	Score
Greg	Male	95
lan	Male	89
Aimeé	Female	94
Jim	Male	92

- since we have the raw scores, we use the raw score formula (we assume a sample)

$$
\begin{gathered}
s^{2}=\frac{S S}{n-1}=\frac{\Sigma\left(X_{i}\right)^{2}-\left[\left(\Sigma X_{i}\right)^{2} / n\right]}{n-1} \\
\Sigma X_{i}^{2}=(95)^{2}+(89)^{2}+(94)^{2}+(92)^{2}=34246
\end{gathered}
$$

$$
\left(\Sigma X_{i}\right)^{2} / n=(95+89+94+92)^{2} / 4=\frac{(370)^{2}}{4}=\frac{136900}{4}=34225
$$

- so,

$$
s^{2}=\frac{34246-34225}{3}=\frac{21}{3}=7
$$

SUM OF SQUARES

- earlier we calculated the squared deviation from the mean

$$
\begin{gathered}
\sum x_{i}^{2}=\sum\left(X_{i}-\bar{X}\right)^{2} \\
=(95-92.5)^{2}+(89-92.5)^{2}+(94-92.5)^{2}+(92-92.5)^{2} \\
=(2.5)^{2}+(-3.5)^{2}+(1.5)^{2}+(-0.5)^{2}=0 \\
=6.25+12.25+2.25+0.25=21.0
\end{gathered}
$$

- we can use that to calculate variance with the deviation score formula:

$$
s^{2}=\frac{\Sigma x_{i}^{2}}{n-1}=\frac{21}{3}=7
$$

- Same as before!
- Note! variance cannot be negative

STANDARD DEVIATION

- variance is in squared units of measurement
- distance: squared meters
- weight: squared kilograms
- temperature: squared degrees
- standard deviation is in the same units as the scores!
- square root of variance

STANDARD DEVIATION

- deviation score formula:

$$
s=\sqrt{s^{2}}=\sqrt{\frac{S S}{(n-1)}}=\sqrt{\frac{\Sigma\left(x_{i}\right)^{2}}{(n-1)}}
$$

- raw score formula:

$$
s=\sqrt{s^{2}}=\sqrt{\frac{S S}{(n-1)}}=\sqrt{\frac{\Sigma\left(X_{i}\right)^{2}-\left[\left(\Sigma X_{i}\right)^{2} / n\right]}{n-1}}
$$

EXAMPLE

Name	Sex	Score
Greg	Male	95
lan	Male	89
Aimeé	Female	94
Jim	Male	92

- since we have the raw scores, we use the raw score formula to calculate variance

$$
s^{2}=\frac{S S}{n-1}=\frac{\Sigma\left(X_{i}\right)^{2}-\left[\left(\Sigma X_{i}\right)^{2} / n\right]}{n-1}
$$

- we calculated earlier that the variance equals:

$$
s^{2}=\frac{34246-34225}{3}=\frac{21}{3}=7
$$

- and then the standard deviation equals:

$$
s=\sqrt{s^{2}}=\sqrt{7} \approx 2.646
$$

WHY BOTHER?

- the value of the standard deviation gives us an idea of how spread out scores are
- larger standard deviations indicate that scores are more spread out

WHY BOTHER?

- we will use standard deviation to let us estimate how different a score is relative to the central tendency of the distribution
- we can then compare (in a certain sense) across distributions!

STANDARD SCORE

- also called z-score

$$
\begin{aligned}
\text { Standard score } & =\frac{\text { raw score }- \text { mean }}{\text { standard deviation }} \\
z & =\frac{X-\bar{X}}{s}
\end{aligned}
$$

- indicates the number of standard deviations a raw score is above or below the mean

EXAMPLE

- if

$$
\bar{X}=26
$$

- and

$$
s=4
$$

- and you have (among others) the scores $X_{1}=16, X_{2}=32, X_{3}=28$
- then

$$
\begin{aligned}
& z_{1}=\frac{X_{1}-\bar{X}}{s}=\frac{16-26}{4}=-2.5 \\
& z_{2}=\frac{X_{2}-\bar{X}}{s}=\frac{32-26}{4}=1.5 \\
& z_{3}=\frac{X_{3}-\bar{X}}{s}=\frac{28-26}{4}=0.5
\end{aligned}
$$

PROPERTIES

- when a raw score is above the mean, its z-score is positive
- when a raw score is below the mean, its z-score is negative
- when a raw score equals the mean, its z-score is zero
- absolute size of the z-score indicates how far from the mean a raw score is

UNITS

- z-scores work in units of standard deviation
- new numbers for same information!
- just like converting units for other familiar measures
- length: feet into meters, miles into kilometers
- weight: pounds into kilograms
- temperature: fahrenheit into celsius
- data: raw score units into standard deviation units
- trick!: standard deviation units depend on your particular set of data!

PROPERTIES

- z-scores are data
- we can find distributions, means, and standard deviations
- special properties of z-score distributions
- The shape of the distribution of standard scores is identical to that of the original distribution of raw scores.
- The mean of a distribution of z-scores will always equal 0 .
- The variance (and standard deviation) of a distribution of z-scores always equals 1 .

EXAMPLE

- A simple data set to play with
- when a raw score is above the mean, its z-score is positive
- when a raw score is below the mean, its z-score is negative
- when a raw score equals the mean, its z-score is zero
- absolute size of the z-score indicates how far from the mean a raw score is

Subject	Raw score	z-score
1	10	1.26
2	9	0.94
3	3	-0.94
4	10	1.26
5	9	0.94
6	2	-1.26
7	2	-1.26
8	10	1.26
9	5	-0.31
10	5	-0.31
11	1	-1.57
12	6	0.0
13	8	0.63
14	6	0.0
15	6	0.0
16	1	-1.57
17	3	-0.94
18	6	0.0
19	10	1.26
20	8	0.63
$n=20$		
\bar{X}	6.0	0.0
s	3.18	1.0

EXAMPLE

- compare distributions of raw scores and z-scores
- shape is the same

USES

- suppose we want to compare the scores of a student in several classes
- we know the student's score, the mean score, the standard deviation, and the student's z-score

Subject	X	\bar{X}	s	z
Psychology	68	65	6	0.50
Mathematics	77	77	9	0.00
History	83	89	8	-0.75

- comparison of raw scores suggests that student did best in history, mathematics, then psychology
- comparison of z-scores suggests that student did best in psychology, mathematics, then history (relative to other students)

TRANSFORMED SCORES

- sometimes z-scores are unattractive
- zero mean
- negative values
- need to convert same information into a new distribution with a new mean and standard deviation

$$
X^{\prime}=\left(s^{\prime}\right)(z)+\bar{X}^{\prime}
$$

- where
- $X^{\prime}=$ new or transformed score for a particular individual
- $s^{\prime}=$ desired standard deviation of the distribution
- $z=$ standard score for a particular individual
- $\bar{X}^{\prime}=$ desired mean of the distribution

TRANSFORMED SCORES

- GOAL: make data understandable; IQ scores, personality tests,...
- NOTE: you can change the mean and standard deviation all you want, but it does not change the information in the data
- shape remains the same!
- conversion back to z-scores would produce the same z-scores!
- a percentile maps to the corresponding transformed score

TRANSFORMED SCORES

- if we transform the scores from our earlier data set using

$$
X^{\prime}=20 X+50
$$

- we get

CONCLUSIONS

- variance
- standard deviation
- standard scores

NEXT TIME

- a very important distribution
- normal distribution

Describing everyone's height.

