PSY 201: Statistics in Psychology Lecture 07 Normal distribution Describing everyone's height.

Greg Francis

Purdue University

Fall 2023

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

DISTRIBUTION

• frequency \rightarrow likelihood, probability

GOAL

• describe (summarize) distributions

- shape: unimodal, bimodal, skew,...
- central tendency: mode, median, mean
- variation: range, variance, standard deviation
- summarizing forces you to lose information
- some theoretical distributions are special!
 - a few numbers completely specify the distribution

NORMAL DISTRIBUTION

$$Y = \frac{1}{\sigma\sqrt{2\pi}}e^{-(X-\mu)^2/2\sigma^2}$$

- Y height of the curve for any given value of X in the distribution of scores
- π mathematical value of the ratio of the circumference of a circle to its diameter. A constant (3.14159.....)
- e base of the system of natural logarithms. A constant (2.7183...)
- μ mean of the distribution of scores
- σ standard deviation of a distribution of scores

sometimes written as

$$Y = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-(X-\mu)^2/2\sigma^2\right]$$

PARAMETERS

- a family of distributions
- $\bullet\,$ member of the family is designated by the mean μ and standard deviation $\sigma\,$
- changing μ shifts the curve to the left or the right
 - shape remains the same

∃ >

PARAMETERS

 $\bullet\,$ changing $\sigma\,$ changes the ${\bf spread}\,$ of the curve

• compare normal distributions for $\sigma = 1$ and $\sigma = 2$, both with $\mu = 3$

PARAMETERS

 \bullet changing μ and σ together produces predictable results

★ Ξ >

PROPERTIES

- all normal distributions have the following in common
 - Unimodal, symmetrical, bell shaped, maximum height at the mean.
 - ► A normal distribution is continuous. X must be a **continuous** variable, and there is a corresponding value of Y for each X value.
 - ► A normal distribution asymptotically approaches the X axis.

- remember *z*-scores:
 - 0 mean
 - 1 standard deviation
- if the z-scores are normally distributed

$$Y = \frac{1}{\sigma\sqrt{2\pi}} e^{-(X-\mu)^2/2\sigma^2}$$

becomes

$$Y = \frac{1}{1\sqrt{2\pi}} e^{-(z-0)^2/2(1^2)}$$

or

$$Y = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

4 3 > 4 3

looks like

A D N A B N A B N A B N

SIGNIFICANCE

- It turns out that lots of frequency distributions can be described as a normal distribution
- for example, an estimate of height

∃ >

SIGNIFICANCE

- It turns out that lots of frequency distributions can be described as a normal distribution
 - intelligence scores
 - weight
 - reaction times
 - judgment of distance
 - rating of personality
 - <u>►</u> ...
- almost any situation where small independent components come together

(B)

SIGNIFICANCE

- when the distribution is a normal distribution, we can describe the distribution by just specifying
 - ► Mean: X
 - Standard deviation: s
 - Noting it is a normal distribution
- that's all we need!
- That's part of our goal: describe distributions

H N

 assume you have a standard normal distribution (don't worry about where it came from)

• if your distribution is normal, you can create a standard normal by converting to *z*-scores

Greg Francis (Purdue University)

・ 同 ト ・ ヨ ト ・ ヨ

same as all other distributions

- identify key aspects of the data
- percentiles
- percentile rank
- proportion of scores within a range
- Þ ...
- make it easier to interpret data significance!

- total area under the curve **always** equals 1.0
- area under the curve from the mean (0) to one tail equals 0.5

- area under the curve one standard deviation away from the mean is approximately 0.3413
- area under the curve two standard deviations away from the mean is approximately 0.4772
- area under the curve three standard deviations away from the mean is approximately 0.4987

CONCLUSIONS

- normal distribution
 - equations
 - properties
 - standard normal equations

э

< □ > < 同 > < 回 > < 回 > < 回 >

NEXT TIME

- area under the curve
- proportions
- percentiles
- percentile ranks

Business decisions.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶