PSY 201: Statistics in Psychology
 Lecture 12
 Probability
 Why casinos make money.

Greg Francis

Purdue University

Fall 2023

DESCRIPTIVE STATISTICS

- most of what we have discussed so far is called descriptive statistics
- distributions
- graphs
- central tendency
- variation
- correlation
- describe sets of data

INFERENTIAL STATISTICS

- given a set of data from a sample
- we want to infer something about the entire population
- mean
- standard deviation
- correlation
- ...
- never with certainty, but with probability

PROBABILITY

- number between 0 and 1
- probability of event A is written as

$$
P(A)
$$

- if

$$
P(A)=1.0
$$

- it indicates with certainty that event A will happen
- if

$$
P(A)=0
$$

- it indicates with certainty that event A will not happen

PROBABILITY LAWS

- there are specific rules to probability
- we want to know the probability of many events, pairs of events, contingent events,...
- how to calculate probabilities depends upon
- Complements
- Mutually exclusive compound events
- Nonmutually exclusive events
- Statistically independent joint events
- Statistically dependent joint events

SINGLE EVENTS

- precise definition requires high-level mathematics
- intuitive definition is that probability of a single event is the ratio of the number of possible outcomes that include the event to the total number of possible outcomes

$$
P(\text { a die coming up } 3)=\frac{\text { Number of outcomes that include } 3}{\text { Total number of outcomes }}
$$

$$
P(\text { a die coming up } 3)=\frac{1}{6} \approx 0.167
$$

$$
123456
$$

COMPLEMENTS

- suppose we know the probability $P(A)$, where A is some event
- then if \bar{A} represents "not A " (called the complement of A)

$$
P(\bar{A})=1.0-P(A)
$$

- when $A=$ turning up a 3 on a die, \bar{A} means turning up anything other than a 3
- since $P(A)=0.167$
- $P(\bar{A})=1.0-0.167=0.833$

$$
123456
$$

COMPOUND EVENTS

- sometimes we know the probability of two events A and B, and we want to know the probability of event A or B
- e.g.

$$
P \text { (turning up a } 3 \text { or a } 4 \text { on a die) }
$$

- these are mutually exclusive events
- one or the other

MUTUALLY EXCLUSIVE

- for mutually exclusive compound events, calculating the probability of the compound is easy
- consider probability of rolling numbers on a die

$$
\begin{gathered}
P(\text { a } 3 \text { or a } 4)=P(3)+P(4) \\
P(\text { turning up a } 3 \text { or a } 4 \text { on a die })=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3} \\
123456
\end{gathered}
$$

- in general, if A and B are mutually exclusive

$$
P(A \text { or } B)=P(A)+P(B)
$$

NONMUTUALLY EXCLUSIVE

- sometimes events are not mutually exclusive
- e.g.
- $A=$ turning up a number ≤ 3 on a die: $P(A)=\frac{1}{2}$
- $B=$ turning up an odd number on a die: $P(B)=\frac{1}{2}$
- what is $P(A$ or $B)$?

$$
123456
$$

- cannot just add probabilities because numbers common to A and B get counted twice!

NONMUTUALLY EXCLUSIVE

- subtract out common probability

$$
\begin{gathered}
P(\text { number } \leq 3 \text { or odd })= \\
P(\leq 3)+P(\text { odd })-P(\leq 3 \text { and odd })= \\
\frac{1}{2}+\frac{1}{2}-\frac{2}{6}=\frac{3}{6}+\frac{3}{6}-\frac{2}{6}=\frac{4}{6}=\frac{2}{3}
\end{gathered}
$$

- in general

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

- when the events are mutually exclusive, $P(A$ and $B)=0$, and we get the rule for mutually exclusive events

JOINT EVENTS

- if we know $P(A)$ and $P(B)$, what is $P(A$ and $B)$?
- both events must occur (simultaneously or successively)
- e.g.
$P(3$ on a die and HEAD on a coin flip)

STATISTICAL INDEPENDENCE

- events are independent if the occurrence of one event does not affect the probability of the other event occurring
- e.g., rolling a 3 on a die has no effect on whether or not a coin will come up HEADS

$$
\begin{aligned}
& P(3 \text { on die })=\frac{1}{6} \\
& P(\text { HEADS })=\frac{1}{2}
\end{aligned}
$$

- so

$$
\begin{gathered}
P(3 \text { and HEADS })=P(3) \times P(\text { HEADS }) \\
P(3 \text { and HEADS })=\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}
\end{gathered}
$$

MULTIPLICATION

- why multiply probabilities of joint events?
- probability is ratio of the number of outcomes including an event to the total number of possible outcomes
- for the joint event " 3 on a die and HEADS", the possible outcomes are

$$
\begin{aligned}
& 1 \mathrm{H}, 2 \mathrm{H}, 3 \mathrm{H}, 4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H} \\
& 1 \mathrm{~T}, 2 \mathrm{~T}, 3 \mathrm{~T}, 4 \mathrm{~T}, 5 \mathrm{~T}, 6 \mathrm{~T}
\end{aligned}
$$

- count up the possibilities!

SAMPLING WITH REPLACEMENT

- suppose we have 10 numbered balls in a jar
- the probability of drawing ball 3 is $\frac{1}{10}$
- if we put the ball back, the probability of drawing ball 3 again is $\frac{1}{10}$ (same for any ball)
- each event (drawing a ball) is independent from previous events
- in general for independent events A and B,

$$
P(A \text { and } B)=P(A) \times P(B)
$$

SAMPLING WITHOUT REPLACEMENT

- many times the probability of an event does depend on other events
- e.g., suppose we have ten numbered balls in a jar
- the probability of drawing ball 3 is $\frac{1}{10}$
- suppose we draw ball 2; leaving nine balls in the jar
- the probability of drawing ball 3 is now $\frac{1}{9}$

CONDITIONAL PROBABILITIES

- we can describe the effect of other events by identifying conditional probabilities
- e.g.
P (drawing ball 3 given that ball 2 was already drawn)

$$
P \text { (ball 3|ball } 2 \text {) }
$$

- in general the probability of event A, given event B is written as

$$
P(A \mid B)
$$

- no direct way of calculating from $P(A)$ or $P(B)$

NONINDEPENDENT EVENTS

- when

$$
P(A)=P(A \mid B)
$$

- we say events A and B are independent
- otherwise the events are nonindependent (dependent)

JOINT PROBABILITY

- if we know $P(A)$ and $P(B \mid A)$ then we can calculate the joint probability

$$
P(A \text { and } B)=P(A) P(B \mid A)
$$

- if we know $P(B)$ and $P(A \mid B)$ then we can calculate the joint probability

$$
P(A \text { and } B)=P(B) P(A \mid B)
$$

- same number!
- if events are independent, this rule is the same as before because

$$
P(A \mid B)=P(A)
$$

EXAMPLE

- what is the probability of drawing ball 2 and then ball 3 from a jar with ten numbered balls?
- we know that

$$
P(\text { drawing ball } 2 \text { from the full jar })=\frac{1}{10}
$$

$P($ drawing ball $3 \mid$ ball 2 is drawn from the full jar $)=\frac{1}{9}$

- so
$P($ drawing ball 3 and drawing ball 2$)=$ P (drawing ball 2 from the full jar) \times
$P($ drawing ball $3 \mid$ ball 2 is drawn from the full jar $)=$

$$
\frac{1}{10} \times \frac{1}{9}=\frac{1}{90}
$$

RANDOMNESS

- we assume coin flips, rolling dice, samples from jars are random events
- unpredictable for a specific instance
- predictable on average over lots of samples (likelihood of happening)
- randomness is sometimes a good thing

CONCLUSIONS

- probability
- mutually exclusive events
- compound events
- independence

NEXT TIME

- review for exam
- SECTION EXAM 1
- fun problems with probability

