PSY 201: Statistics in Psychology
 Lecture 13
 Probability
 Coincidences are rarely interesting.

Greg Francis

Purdue University

Fall 2023

PROBABILITY

number between 0 and 1
probability of event A is written as

$$
P(A)
$$

if

$$
P(A)=1.0
$$

it indicates with certainty that event A will happen if

$$
P(A)=0
$$

it indicates with certainty that event A will not happen

EVERYDAY EVENTS

- people often have misconceptions about the way probabilities interact
- things that seem rare may not actually be
- interesting to analyze the probability of events that seem unusual
- Julius Ceasar
- Hitting streaks
- Predictive dreams
- Shared birthdays
- Con games with cards

JULIUS CAESAR

- Some 2000 years ago (or so) Julius Caesar is said to have gasped "You too, Brutus? Then I die." as his friend stabbed him to death
- What are the chances that you just inhaled a molecule that came out of his mouth?
- Surprisingly good! Almost 0.99.
- Assumes
- Caesar's dying breath contained about $A=2.2 \times 10^{22}$ molecules
- Those molecules are free and distributed around the globe evenly.
- Your inward breath contained about $B=2.2 \times 10^{22}$ molecules
- The atmosphere contains about $N=10^{44}$ molecules

JULIUS CAESAR

- If there are N molecules and Caesar exhaled A of them, then the probability that any given molecule you inhale is from Caesar is

$$
P(\mathrm{~m} \text { from } \mathrm{C})=\frac{A}{N}=2.2 \times 10^{-23}
$$

- which is very small!
- So the probability that any given molecule you inhale is not from Caesar is the complement:

$$
P(\mathrm{~m} \text { not from } \mathrm{C})=1-\frac{A}{N}=1-2.2 \times 10^{-23}
$$

JULIUS CAESAR

- So the probability of inhaling B molecules that are not from Caesar is

$$
P(\text { breath not from } C)=\left(1-\frac{A}{N}\right)^{B} \approx 0.01
$$

- So the probability of your breath containing at least one molecule from Caesar is approximately $1-0.01=0.99$!

HITTING STREAKS

- Pete Rose set a National League record with 44 consecutive games with a safe hit
- this is impressive, but is it rare?
- Rose batted around 0.300 (had a safe hit 30% of the time)
- so, assuming 4 at bats per game, the probability of not getting a hit during a game is

$$
P(\text { no hit })=(1-0.3)^{4}=0.24
$$

- So the probability of getting at least one hit is $1-0.24=0.76$.

HITTING STREAKS

- Still, the probability of getting hits in any given sequence of 44 games is

$$
P(44 \text { streak })=(0.76)^{44}=0.000005699
$$

- and the probability of not getting a streak is

$$
P(\text { not } 44 \text { streak })=1-(0.76)^{44}=0.999994301
$$

HITTING STREAKS

- But there are 162 games in a season, so there are 118 sets of 44 consecutive games.
- Thus, the probability of not getting a streak of hits in at least 44 consecutive games out of a 162 game season is:

$$
P(\text { no streak })=(0.999994)^{118}=0.999327
$$

- so the probability of a 44-game streak is

$$
P(\text { streak })=1-(0.999994)^{118}=0.000672
$$

- (includes the possibility of streaks of more than 44 games)
- Still very rare!

HITTING STREAKS

- But how many players have been in the Major Leagues at any given time? (say 30 that bat like Rose)
- the probability that every player will not get a streak of at least 44 games in a given year is

$$
P(\text { no streak })=(0.9993)^{30}=0.9800
$$

- So probability that at least one player gets such a streak is

$$
1.0-0.980027651=0.019972349
$$

- still small!

HITTING STREAKS

- And how many years has baseball been played? (say 100)
- the probability that every year everyone will not get a streak of at least 44 games in a given year is

$$
P(\text { no streak })=(0.9800)^{100}=0.1329
$$

- So probability that at least one player on some year gets such a streak is

$$
1.0-0.132994269=0.867005731
$$

- which is pretty good odds!
- Thus, we can expect that Rose's streak will be broken eventually (unless pitchers become much better)

PREDICTIVE DREAMS

- ever dream something and had it come true?
- Many people take this occurence as evidence of extrasensory perception and "other worlds". But it's actually not that uncommon from a probabilitistic point of view
- suppose that the probability that a night's dream matches some later event in life is 1 in 10000

$$
P(\text { predictive dream })=0.0001
$$

- Then the chance that a dream is non-predictive is

$$
P(\text { non predictive dream })=1-0.0001=0.9999
$$

- assume that dream predictiveness is independent

PREDICTIVE DREAMS

- With 365 days a year, the probability that all 365 nights have non-predictive dreams is

$$
P(\text { non predictive })=(0.9999)^{365}=0.96415
$$

- so the probability that an individual has a predictive dream during a year is

$$
P(\text { predictive })=1.0-0.96415=0.03585
$$

- or about 3.6% of people have a predictive dream during a year
- considering that there are billions of people, this corresponds to millions of dreams (and lots of people talk about them!)

PREDICTIVE DREAMS

- but what about for an individual?
- over a span of 20 years, the probability that all your dreams are non predictive is

$$
P(\text { non predictive })=(0.96415)^{20}=0.481
$$

- which means that the probability of having a predictive dream is

$$
P(\text { predictive })=1.0-0.481=0.519
$$

- better than 50% chance!
- It might be unusual to not have had a predictive dream!

SHARED BIRTHDAYS

- ever been amazed to find that a group of people has two members with a shared birthday?
- you shouldn't be; it is not much of a coincidence
- Consider that a year has 366 days (counting February 29)
- to be certain that a group of people has a common birthday you would need a group of size 367
- what if we were willing to be just 50% certain of a shared birthday? How big would the group need to be?
- the surprising answer is 23

SHARED BIRTHDAYS

- what is the probability that a group of 23 people have no shared birthdays?
- how many ways to have birthdates from 23 people?

$$
(366)^{23}=9.1214727 \times 10^{58}
$$

- How many ways to have 23 birthdates with no shared birthdays?

$$
366 \times 365 \times 364 \times \ldots \times 344=4.5030611 \times 10^{58}
$$

SHARED BIRTHDAYS

- probability of no shared birthdays is the number of ways to have no shared birthdays divided by the number of ways to have birthdays

$$
P(\text { no shared })=\frac{4.5030 \times 10^{58}}{9.1214 \times 10^{58}}=0.4936
$$

- so the probability of at least one shared birthday is

$$
P(\text { shared })=1.0-0.4936=0.5063
$$

- just about 50%
- Test it!

CON GAMES

- Here is a game that is played on the streets of some cities
- A man has 3 cards
- Card 1: Black on both sides.
- Card 2: Red on both sides.
- Card 3: Black on one side and red on the other.
- He drops the cards in a hat, turns around and asks you to pick a card. Then he asks you to show him only one side of the card.
- Suppose you show him a red side. Now the man knows that the card cannot be Card 1 (black on both sides) and the card in your hand must be either Card 2 or Card 3.
- He offers you a bet of even money that he can guess the card. Is this a fair bet?

CON GAMES

- It might seem that this is fair. After all, the card in your hand is either Card 2 or Card 3. He has a 50% chance of guessing correctly, right?
- No.

CON GAMES

- Given that you have shown him one red side he knows that what you have shown is either:
- first side of card 2
- second side of card 2
- red side of card 3
- Thus, of the possibilities, two are consistent with his guess of Card 2, and only one is consistent with your option of Card 3. He wins two-thirds of the time.

CONCLUSIONS

- probability
- apply to lots of situations
- coincidences are not as interesting as you might expect

NEXT TIME

- Decision making from noisy data
- Signal detection

Is that your phone?

