PSY 201: Statistics in Psychology
 Lecture 16
 Underlying distributions
 Can you read my mind?

Greg Francis

Purdue University

Fall 2023

DISTRIBUTION

- representation of all possible outcomes
- area under the curve represents relative frequency of events
- completely describes an aspect of a situation relative to a particular variable
- often theoretical curves (but not always)

DICE ROLES

Die 1	Die 2	Sum	\mid Difference \mid
1	1	2	0
1	2	3	1
1	3	4	2
1	4	5	3
1	5	6	4
1	6	7	5
2	1	3	1
2	2	4	0
2	3	5	1
2	4	6	2
2	5	7	3
2	6	8	4
3	1	4	2
3	2	5	1
3	3	6	0
3	4	7	1
3	5	8	2
3	6	9	3
4	1	5	3
4	2	6	2
4	3	7	1
4	4	8	0
4	5	9	1
4	6	10	2
5	1	6	4
5	2	7	3
5	3	8	2
5	4	9	1
5	5	10	0
5	6	11	1
6	1	7	5
6	2	8	4
6	3	9	3
6	4	10	2
6	5	11	1
6	6	12	0

DISTRIBUTION

- we can identify the underlying distribution of the sum of dice variable

Sum	f
1	0
2	1
3	2
4	3
5	4
6	5
7	6
8	5
9	4
10	3
11	2
12	1
13	0

DISTRIBUTION

- same type of stuff we did earlier

- frequency of every possible outcome of the variable Sum

VARIABLE

- a distribution is specific to a variable (x-coordinate)
- suppose instead of the sum of dice roles, we look at the distribution of the absolute value of the difference of dice roles

\mid Difference	f
0	6
1	10
2	8
3	6
4	4
5	2
6	0

DISTRIBUTION

- the underlying distribution is different because we are considering a different variable

USE

- once we have the underlying distribution we can calculate probabilities

$$
P(A)=\frac{\text { Number of outcomes that include } A}{\text { Total number of possible outcomes }}
$$

- you better believe a casino cares about this!
- so does the government
- in practice statisticians generally work with theoretical distributions

BINOMIAL DISTRIBUTION

- suppose you have a situation where there are only two possible outcomes from an action
- e.g., flip a coin: H or T
- each flip is independent of the other flips
- how many H's do you get if you flip the coin over and over (or flip many identical coins at once)?

BINOMIAL DISTRIBUTION

- suppose you flip the coin twice
- the possible outcomes are

First coin	Second Coin	Number H
H	H	2
H	T	1
T	H	1
T	T	0

- can produce a frequency distribution table

Number H's	f
0	1
1	2
2	1

BINOMIAL

- from Webster
(1) a mathematical expression consisting of two terms connected by a plus sign or minus sign
(2) a biological species name consisting of two terms

$$
(H+T)
$$

- to find out how many H's and how many T's, for two coin flips, square the binomial

$$
(H+T)^{2}=H^{2}+2 H T+T^{2}
$$

- or

$$
(H+T)^{2}=H H+2 H T+T T
$$

- coefficient in front identifies how many of each combination

BINOMIAL DISTRIBUTION

- suppose you flip the coin thrice
- the possible outcomes are

First coin	Second Coin	Third Coin	Number H
H	H	H	3
H	T	H	2
T	H	H	2
T	T	H	1
H	H	T	2
H	T	T	1
T	H	T	1
T	T	T	0

BINOMIAL DISTRIBUTION

- can produce a frequency distribution table

Number H's	f
0	1
1	3
2	3
3	1

BINOMIAL

- for three flips, cube the binomial

$$
(H+T)^{3}=H^{3}+3 H^{2} T+3 H T^{2}+T^{3}
$$

- or

$$
(H+T)^{3}=H H H+3 H H T+3 H T T+T T T
$$

- coefficient of each term indicates number of occurrences!
- this approach works in general (combinatorics)

BINOMIAL DISTRIBUTION

- in turns out that for m flips of the coin the probability of getting x number of H's is

$$
P\left(x \text { number of } \mathrm{H}^{\prime} \mathrm{s}\right)=\frac{m!}{x!(m-x)!}(0.5)^{m}
$$

- where x ! $=(x)(x-1)(x-2) \ldots(2)(1)$
is " x-factorial"
(don't worry about it)
- works for probabilities other than 0.5 too (slightly more complicated)
- Your textbook provides an on-line calculator for any probability

BINOMIAL AND NORMAL

- for $m=12$

- looks a lot like a normal distribution
- for $m>20$, the difference is very small

USE

- suppose you have a friend who always drinks Sprite, claiming it is better than 7-Up
- you test your friend's ability to distinguish between Sprite and 7-Up
- Your friend sips two glasses of soda, one containing Sprite and the other 7-Up. Your friend must decide which is the Sprite. You do this 6 times. (Glasses are identical, randomized for tasting first,...)
- Your friend identifies the glass containing Sprite every time. Now you need to decide if your friend really knows his stuff or is just lucky.

USE

- You need to know the probability of guessing 6 correct identifications out of 6 trials
- binomial distribution gives us exactly what we want to know

- the probability of guessing correctly 6 out of 6 times is very small (0.0156)
- most likely your friend can tell Sprite from 7-Up
- we will be using distributions like this a lot!
- compare performance to guessing performance
- performance we get from experimentation
- guessing performance we get through tables and calculations (can be complicated)

MIND READING?

- Suppose I flip a coin and look at the upward side.
- Can people read my mind?
- Suppose we took 10 people and asked them to guess which side I saw.
- Some will guess correctly, just by luck.
- How often must people guess correctly before we decide they can read my mind?

MIND READING?

- Each person guessing has a 1 in 2 chance of being correct. So if each person was guessing, how many would we expect to guess correctly?
- What is the probability for each number of guessing correctly?: its a binomial distribution
- can produce a table of probabilities
- It would be surprising (rare) if people were correct 8,9 , or 10 times out of 10 .

Number correct	p
0	0.0010
1	0.0098
2	0.0439
3	0.1172
4	0.2051
5	0.2461
6	0.2051
7	0.1172
8	0.0439
9	0.0098
10	0.0010

MIND READING?

- Let's see if people can read my mind:
- measure ability to read my mind
- get number correct
- see if it is "rare enough" for us to conclude they can read minds
- By using the on-line Binomial distribution calculator

CONCLUSIONS

- underlying distributions
- binomial distribution
- started hypothesis testing

NEXT TIME

- sampling distribution of the mean
- properties of sampling distributions

Marvel at my predictive powers!

