PSY 201: Statistics in Psychology

Lecture 19

Hypothesis testing of the mean Why clinical studies use thousands of subjects.

Greg Francis

Purdue University

Fall 2023

SUPPOSE

- ullet we think the mean value of a population of SAT scores is $\mu=455$
- we can take a sample of n=144 from the population and calculate the sample mean of SAT scores $\overline{X}=535$ with sample standard deviation s=100

HYPOTHESIS TESTING

- four steps
 - State the hypothesis and criterion.
 - 2 Compute the test statistic.
 - Compute the p value
 - Make a decision.

RECAP OF LAST TIME

• (1) State the hypotheses and set the criterion

$$H_0: \mu = 455$$

$$H_a$$
 : $\mu \neq$ 455

• $\alpha = 0.05$

RECAP OF LAST TIME

• (2) Compute the test statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$

$$t = \frac{535 - 455}{8.33} = 9.60$$

• (3) Compute the *p*-value (using the *t*-distribution calculator with df = n - 1):

$$p \approx 0$$

- (4) Make a decision: $p < \alpha$, so reject H_0
 - ightharpoonup the found sample mean would be a very rare event if H_0 were true

DIFFERENT MEAN

 suppose we had the same situation as before, but we had instead found

$$\overline{X} = 465$$

• (1) State the hypotheses and set the criterion (unchanged!)

$$H_0: \mu = 455$$

$$H_a$$
: $\mu \neq 455$

- $\alpha = 0.05$
- (2) Compute the test statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$

$$t = \frac{465 - 455}{8.33} = 1.20$$

DIFFERENT MEAN

• (3) Compute the *p*-value (using the *t*-distribution calculator with df = n - 1):

$$p = 0.2301$$

- (4) Make a decision: $p > \alpha$, so do **not** reject H_0
- ullet the found sample mean would not be very rare if H_0 were true
 - if the null hypothesis is true, then the probability that $|\overline{X}| \geq$ 465 would be found by random sampling is greater than .05

SAMPLE SIZE

 suppose we had the same situation as before, but we had instead found

$$\overline{X} = 465$$

- with a sample size of n = 500
- (1) State the hypotheses and set the criterion

$$H_0: \mu = 455$$

$$H_{\rm a}:\mu
eq 455$$

• $\alpha = 0.05$

SAMPLE SIZE

• (2) Compute the test statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$

ullet we need to recompute $s_{\overline{X}}$

$$s_{\overline{X}} = \frac{s}{\sqrt{n}} = \frac{100}{\sqrt{500}} = 4.47$$

$$t = \frac{465 - 455}{4.47} = 2.24$$

SAMPLE SIZE

• (3) Compute the *p*-value (using the *t*-distribution calculator with df = n - 1 = 499):

$$p = 0.0251$$

- (4) Make a decision: $p < \alpha$, so do reject H_0
 - ▶ the found sample mean would be a rare event if H_0 were true. The probability that $|\overline{X}| \ge 465$ would be found by random sampling is less than .05

CALCULATOR

 you need to understand the math and calculations, but generally you should not do it

CLINICAL TRIALS

- often hear about medical studies that track thousands of patients
- why do they need so many people?
- a larger sample makes for less variation in the sampling distribution of the mean

$$s_{\overline{X}} = \frac{s}{\sqrt{n}}$$

- thus, if the null hypothesis really is false, you are more likely to reject it with a larger sample
- if the null hypothesis is really true, you are not more likely to reject it (no extra mistakes with a larger sample size!)

COMMENTS

- several things are worth noting
 - The α probability is about the process of making decisions. It controls Type I error rates, but for any given decision you do not know if you made an error or not.
 - ▶ Even when we reject H_0 , there is always a chance that it is true.
 - ▶ Even when we do not reject H_0 , there is always a chance that it is false.
 - ▶ The statement p < 0.05 is about the **statistic** given the hypothesis, not about the hypothesis. We never conclude that H_0 is false with probability 0.95.
 - ▶ Technically, we have done all of this before.
 - ► These techniques are quantifiable.
 - ▶ No inclusion of knowledge about the direction of difference.

DIRECTIONAL HYPOTHESIS

- ullet we choose a significance level, lpha
- indicates probability of Type I error
- earlier, we split this error across the two tails of the sampling distribution

DIRECTIONAL HYPOTHESIS

- suppose we know (or strongly suspect) that if the sample mean \overline{X} is different from the population mean μ , it will be **greater**
- then we don't need to worry about the left-side tail

$$H_0: \mu = 455$$

$$H_a: \mu > 455$$

REGION OF REJECTION

- if we only have to worry about one tail, the region of rejection (in that tail) is larger!
- with df = 143, last 5% starts with a t-score of 1.656
- we can reject H_0 when the difference between \overline{X} and μ is smaller!

EXAMPLE

- we know that the sampling distribution of t is:
 - A t distribution with df = 143.
 - ▶ Has a mean of $\mu = 0$.
 - Has a standard error of the mean

$$s_{\overline{X}} = \frac{s}{\sqrt{n}} = \frac{100}{\sqrt{144}} = 8.33$$

REGION OF REJECTION

- area under the curve represents the probability of getting the corresponding t values, given that H_0 is true
- the extreme right tail of the sampling distribution corresponds to what should be very rare *t* values
- critical *t*-score value is 1.656

TEST STATISTICS

we compute test statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$

$$t = \frac{535 - 455}{8.33} = 9.60$$

greater than critical value

- reject H_0
- The same decision is found by computing the *p*-value

$$p \approx 0 < \alpha = 0.05$$

EXAMPLE

suppose everything was the same, except we had hypotheses:

$$H_0$$
 : $\mu = 455$

$$H_{\mathrm{a}}$$
 : μ < 455

• then we would shift the region of rejection to the left tail

EXAMPLE

- the critical *t*-score value becomes -1.656
- with our sample mean of $\overline{X} = 535$, and z = 9.60,
- we cannot reject H_0

CALCULATOR

 you need to understand the math and calculations, but generally you should not do it

CONCLUSIONS

- hypothesis testing
- sample size
- directional test

NEXT TIME

- Designing experiments
- Power
- Selecting sample size

Plan ahead!