PSY 201: Statistics in Psychology
 Lecture 19
 Hypothesis testing of the mean
 Why clinical studies use thousands of subjects.

Greg Francis

Purdue University

Fall 2023

SUPPOSE

- we think the mean value of a population of SAT scores is $\mu=455$
- we can take a sample of $n=144$ from the population and calculate the sample mean of SAT scores $\bar{X}=535$ with sample standard deviation $s=100$

HYPOTHESIS TESTING

- four steps
(1) State the hypothesis and criterion.
(2) Compute the test statistic.
(3) Compute the p value
(9) Make a decision.

RECAP OF LAST TIME

- (1) State the hypotheses and set the criterion

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu \neq 455
\end{aligned}
$$

- $\alpha=0.05$

RECAP OF LAST TIME

- (2) Compute the test statistic

$$
\begin{gathered}
t=\frac{\bar{X}-\mu}{s_{\bar{X}}} \\
t=\frac{535-455}{8.33}=9.60
\end{gathered}
$$

- (3) Compute the p-value (using the t-distribution calculator with $d f=n-1)$:

$$
p \approx 0
$$

- (4) Make a decision: $p<\alpha$, so reject H_{0}
- the found sample mean would be a very rare event if H_{0} were true

DIFFERENT MEAN

- suppose we had the same situation as before, but we had instead found

$$
\bar{X}=465
$$

- (1) State the hypotheses and set the criterion (unchanged!)

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu \neq 455
\end{aligned}
$$

- $\alpha=0.05$
- (2) Compute the test statistic

$$
\begin{gathered}
t=\frac{\bar{X}-\mu}{s_{\bar{X}}} \\
t=\frac{465-455}{8.33}=1.20
\end{gathered}
$$

DIFFERENT MEAN

- (3) Compute the p-value (using the t-distribution calculator with $d f=n-1)$:

$$
p=0.2301
$$

- (4) Make a decision: $p>\alpha$, so do not reject H_{0}
- the found sample mean would not be very rare if H_{0} were true
- if the null hypothesis is true, then the probability that $|\bar{X}| \geq 465$ would be found by random sampling is greater than .05

SAMPLE SIZE

- suppose we had the same situation as before, but we had instead found

$$
\bar{X}=465
$$

- with a sample size of $n=500$
- (1) State the hypotheses and set the criterion

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu \neq 455
\end{aligned}
$$

- $\alpha=0.05$

SAMPLE SIZE

- (2) Compute the test statistic

$$
t=\frac{\bar{X}-\mu}{s_{\bar{X}}}
$$

- we need to recompute $s_{\bar{X}}$

$$
\begin{aligned}
s_{\bar{X}} & =\frac{s}{\sqrt{n}}=\frac{100}{\sqrt{500}}=4.47 \\
t & =\frac{465-455}{4.47}=2.24
\end{aligned}
$$

SAMPLE SIZE

- (3) Compute the p-value (using the t-distribution calculator with $d f=n-1=499)$:

$$
p=0.0251
$$

- (4) Make a decision: $p<\alpha$, so do reject H_{0}
- the found sample mean would be a rare event if H_{0} were true. The probability that $|\bar{X}| \geq 465$ would be found by random sampling is less than .05

CALCULATOR

- you need to understand the math and calculations, but generally you should not do it

Enter data:

```
Sample size \(n=500\)
Sample mean \(\bar{X}=465\)
Sample standard deviation \(s=100\)
```

```
    Specify hypotheses:
```

 Specify hypotheses:
 $H_{0}: \mu=455$
$H_{0}: \mu=455$
H_{a} : Two-tails ©
H_{a} : Two-tails ©
$\alpha=0.05$
$\alpha=0.05$
Run Test

```
    Run Test
```

	Test summary
Null hypothesis	$H_{0}: \mu=455$
Alternative hypothesis	$H_{a}: \mu \neq 455$
Type I error rate	$\alpha=0.05$
Sample size	$n=500$
Sample mean	$\bar{X}=465.0000$
Sample standard deviation	$s=100.000000$
Sample standard error	$s_{\bar{X}}=4.472136$
Test statistic	$t=2.236068$
Degrees of freedom	$d f=499$
p value	$p=0.025789$
Decision	Reject^{2}
Confidence interval critical value $t_{c v}=1.964729$	
Confidence interval hypothesis	
	$\mathrm{CI}_{95}=(456.213463,473.786537)$

CLINICAL TRIALS

- often hear about medical studies that track thousands of patients
- why do they need so many people?
- a larger sample makes for less variation in the sampling distribution of the mean

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}
$$

- thus, if the null hypothesis really is false, you are more likely to reject it with a larger sample
- if the null hypothesis is really true, you are not more likely to reject it (no extra mistakes with a larger sample size!)

COMMENTS

- several things are worth noting
- The α probability is about the process of making decisions. It controls Type I error rates, but for any given decision you do not know if you made an error or not.
- Even when we reject H_{0}, there is always a chance that it is true.
- Even when we do not reject H_{0}, there is always a chance that it is false.
- The statement $p<0.05$ is about the statistic given the hypothesis, not about the hypothesis. We never conclude that H_{0} is false with probability 0.95 .
- Technically, we have done all of this before.
- These techniques are quantifiable.
- No inclusion of knowledge about the direction of difference.

DIRECTIONAL HYPOTHESIS

- we choose a significance level, α
- indicates probability of Type I error
- earlier, we split this error across the two tails of the sampling distribution

DIRECTIONAL HYPOTHESIS

- suppose we know (or strongly suspect) that if the sample mean \bar{X} is different from the population mean μ, it will be greater
- then we don't need to worry about the left-side tail

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu>455
\end{aligned}
$$

REGION OF REJECTION

- if we only have to worry about one tail, the region of rejection (in that tail) is larger!
- with $d f=143$, last 5% starts with a t-score of 1.656
- we can reject H_{0} when the difference between \bar{X} and μ is smaller!

EXAMPLE

- we know that the sampling distribution of t is:
- A t distribution with $d f=143$.
- Has a mean of $\mu=0$.
- Has a standard error of the mean

$$
s_{\bar{X}}=\frac{s}{\sqrt{n}}=\frac{100}{\sqrt{144}}=8.33
$$

REGION OF REJECTION

- area under the curve represents the probability of getting the corresponding t values, given that H_{0} is true
- the extreme right tail of the sampling distribution corresponds to what should be very rare t values
- critical t-score value is 1.656

TEST STATISTICS

- we compute test statistic

$$
\begin{gathered}
t=\frac{\bar{X}-\mu}{s_{\bar{X}}} \\
t=\frac{535-455}{8.33}=9.60
\end{gathered}
$$

- greater than critical value

$$
9.60>1.656
$$

- reject H_{0}
- The same decision is found by computing the p-value

$$
p \approx 0<\alpha=0.05
$$

EXAMPLE

- suppose everything was the same, except we had hypotheses:

$$
\begin{aligned}
& H_{0}: \mu=455 \\
& H_{a}: \mu<455
\end{aligned}
$$

- then we would shift the region of rejection to the left tail

EXAMPLE

- the critical t-score value becomes -1.656
- with our sample mean of $\bar{X}=535$, and $z=9.60$,
- we cannot reject H_{0}

$$
p \approx 1>\alpha=0.05
$$

CALCULATOR

- you need to understand the math and calculations, but generally you should not do it

Enter data:

Sample size $n=144$
Sample mean $\bar{X}=535$
Sample standard deviation $s=100$

Specify hypotheses:

$\alpha=0.05$
Run Test

Test summary

Null hypothesis	$H_{0}: \mu=455$
Alternative hypothesis	$H_{a}: \mu<455$
Type I error rate	$\alpha=0.05$
Sample size	$n=144$
Sample mean	$\bar{X}=535.0000$
Sample standard deviation	$s=100.000000$
Sample standard error	$s_{\bar{X}}=8.333333$
Test statistic	$t=9.600000$
Degrees of freedom	$d f=143$
p value	$p=1.000000$
Decision	Do not the reject null hypothesis $_{\text {Confidence interval critical value } t_{c v}=1.976692}^{\text {Confidence interval }}$
	$\mathrm{CI}_{95}=(518.527565,551.472435)$

CONCLUSIONS

- hypothesis testing
- sample size
- directional test

NEXT TIME

- Designing experiments
- Power
- Selecting sample size

Plan ahead!

