PSY 201: Statistics in Psychology
 Lecture 23
 Hypothesis tests for a proportion Can you read my mind? Part II

Greg Francis

Purdue University

Fall 2023

HYPOTHESIS TESTING

- four steps
(1) State the hypothesis and the criterion
(2) Compute the test statistic.
(3) Compute the p-value.
(9) Make a decision

HYPOTHESIS TESTING

- we need to know the properties of the sampling distribution
- for the mean, the central limit theorem tells us that the sampling distribution is normal, and specifies the mean and standard deviation (standard error)
- area under the curve of the sampling distribution gives probability of getting that sampled value, or values more extreme (p-value)
- for other types of statistics, the sampling distribution is different
- area under the curve of sampling distribution still gives probability of getting that sampled value, or values more extreme
- proportion

HYPOTHESIS TESTING

- the approach is still basically the same
- we compute

$$
\text { Test statistic }=\frac{\text { statistic }- \text { parameter }}{\text { standard error of the statistic }}
$$

- and use it to compute a p-value, which we compare to α

PROPORTION

- many times we want to know what proportion (P) of a population has a certain trait
- Own a phone.
- Are a democrat.
- Are a republican.
- Own a computer.
- ...
- dichotomous population (have trait or do not)
- percentages

PROPORTION

- we can take a random sample and calculate a sample proportion p
- we can test hypotheses about the population parameter P e.g.

$$
\begin{aligned}
& H_{0}: P=0.5 \\
& H_{a}: P \neq 0.5
\end{aligned}
$$

- the sampling distribution of p is the binomial distribution
- for large samples it is very close to the normal distribution

STANDARD ERROR

- an estimate of the standard error of the sampling distribution (standard error of the sample proportion) is:

$$
s_{p}=\sqrt{\frac{P Q}{n}}
$$

- $P=$ population proportion possessing characteristic
- $Q=1-P=$ population proportion not possessing characteristic
- $n=$ sample size
- now we can apply the techniques of hypothesis testing!

PEPSI CHALLENGE

- several years ago Pepsi sponsored the Pepsi Challenge where you sampled Coke and Pepsi and decided which tasted better
- after testing hundreds of people, they found that more than half the Coke drinkers preferred Pepsi (63\%)
- how would we test to see if the proportion of people who preferred Pepsi over Coke was a significant proportion (different from chance)?

HYPOTHESIS

- Step 1. State the hypothesis and criterion. By chance we would expect the proportion of people that preferred Pepsi would be 50\%

$$
\begin{aligned}
& H_{0}: P=0.5 \\
& H_{a}: P \neq 0.5
\end{aligned}
$$

- Let's set our level of significance at $\alpha=0.05$, two-tailed test

CRITERION

- Step 2. Compute the test statistic. Suppose the sample proportion is

$$
p=\frac{189}{300}=0.63
$$

- Let's suppose $n=300$ people were tested, and so the standard error of the sample proportion is:

$$
s_{p}=\sqrt{\frac{P Q}{n}}=\sqrt{\frac{(0.5)(0.5)}{300}}=0.02886
$$

TEST STATISTIC

- the test statistic is:

$$
z=\frac{p-P}{s_{p}}=\frac{0.63-0.5}{0.02886}=4.50
$$

- Step 3. Compute the p-value. We use the Normal Distribution Calculator to compute

$$
p \approx 0
$$

- Step 4. Make a decision. Since $p<\alpha=0.05$, we can reject H_{0} !
- If $P=0.5$, the probability of getting $p=0.63$, or an even bigger difference from $P=0.5$, from a random sample of 300 people is less than 0.05 .
- The observed difference is a significant difference.

CONFIDENCE INTERVALS

- Let's construct a confidence interval with level of confidence $1-\alpha=0.95$
- The critical value $z_{c v}$ is found from the Inverse Normal Distribution Calculator

$$
z_{c v}=1.96
$$

- so

$$
C l_{95}=p \pm(1.96)\left(s_{p}\right)
$$

- For the confidence interval, we recompute the standard error by using the estimate from the sample

$$
\begin{gathered}
s_{p}=\sqrt{\frac{p q}{n}}=\sqrt{\frac{(0.63)(0.37)}{300}}=0.0279 \\
C l_{95}=0.63 \pm(1.96)(0.0279) \\
C l_{95}=(0.57,0.68)
\end{gathered}
$$

- which does not include the chance level $P=0.5$

MIND READING

- I am going to pick one of the following words as a "special" word
- You try to read my mind as to which one is "special"
- write it down on a sheet of paper. I'll write down my chosen word on a sheet of paper
- COMPUTER
- STEREO
- BICYCLE
- STAPLER
- BOOKCASE
- DESK

MIND READING

- Now, I tell you my special word, and we find out how many of you were correct. We are measuring p, the sample proportion
- we can test whether you can read my mind
- (1) State the hypothesis and the criterion
- the null hypothesis is that you cannot read my mind, so we say that

$$
\begin{gathered}
H_{0}: P=\frac{1}{6}=0.167 \\
H_{a}: P \neq 0.167
\end{gathered}
$$

- where 0.167 is what you would get just by guessing
- $\alpha=0.10$

MIND READING

- (2) Compute the test statistic

$$
\begin{gathered}
s_{p}=\sqrt{\frac{P Q}{n}}=\sqrt{\frac{(0.167)(0.833)}{n}}=\sqrt{\frac{0.1391}{n}}= \\
z=\frac{p-P}{s_{p}}=
\end{gathered}
$$

- (3) Which we plug in to the Normal Distribution Calculator to find the p-value
- (4) Make a decision
- We can do it all with the One Sample Proportion Test Calculator in the textbook

POWER

- How would we design a good experiment to test Mind Reading abilities?
- How big a sample do we need to have a 90% chance of rejecting the H_{0} ?
- Conceptually, this is the same issue as estimating power or sample size for a hypothesis test of means
- We just need to use the sampling distribution for a sample proportion instead of the sampling distribution for a sample mean

POWER

- We have to set the specific proportion for the alternative hypothesis
- Suppose we plan to test

$$
H_{0}: P=0.167, H_{a}: P \neq 0.167
$$

- and we set the specific alternative as

$$
H_{a}: P_{a}=0.2
$$

- What is the probability that a random sample of $n=25$ will reject the H_{0} ?
- The on-line calculator does all the work!

POWER

Specify the population characteristics:

$$
\begin{aligned}
& H_{0}: P_{0}=0.167 \\
& H_{a}: P_{a}=0.2
\end{aligned}
$$

Specify the properties of the test:
Type of test Two-tails
Type I error rate, $\alpha=0.05$
Power $=0.090999$
Calculate minimum sample size
Sample size, $n=25$
Calculate power

- Less than 10% chance of rejecting the null hypothesis
- What sample size do we need to have 90% power?

Specify the population characteristics:

$$
\begin{aligned}
& H_{0}: P_{0}=0.167 \\
& H_{a}: P_{a}=0.2
\end{aligned}
$$

Specify the properties of the test:
Type of test Two-tails
Type I error rate, $\alpha=0.05$
Power= 0.9
Sample size, $n=1421$

Calculate minimum sample size
Calculate power

POWER

- Suppose we plan to test

$$
H_{0}: P=0.167, H_{a}: P>0.167
$$

- What sample size do we need to have 90% power?

Specify the population characteristics:

$$
\begin{aligned}
& H_{0}: P_{0}=0.167 \\
& H_{a}: P_{a}=0.2
\end{aligned}
$$

Specify the properties of the test:
Type of test Positive one-tail 0
Type I error rate, $\alpha=0.05$
Power= 0.9
Calculate minimum sample size
Sample size, $n=1165$
Calculate power

POWER

- Let's use the proportion we found for the class as the specific alternative value
- Power?
- Sample size for 90% power?

CONCLUSIONS

- testing significance of proportions
- confidence intervals for proportions
- power for tests of proportions

NEXT TIME

- hypothesis testing of correlations
- Fisher z transform
- another t test
- confidence interval
- power

Is there a correlation between homework and exam scores?

