PSY 201: Statistics in Psychology
 Lecture 29
 Hypothesis testing for dependent proportions What do people think about death?

Greg Francis

Purdue University

Fall 2023

DEPENDENT SAMPLES

- when the samples are not independent, hypothesis testing of proportions becomes a bit more complicated
- samples are dependent when each score in one sample is paired with a score in the other sample
- just like dependent samples for the mean, the problem is that the samples are not independent (not truly random) and we need to take that into account
- This can be a good thing from a statistical point of view
- We can remove some variability

EXAMPLE

- Testing the difference of proportions of individuals who pass each of two similar items on a test. (e.g. comparing pass/fail for two sets of students who get better than 600 SAT)
- Test the difference in proportions of individuals who support something before and after discussion.
- Comparing proportions of husbands and wives on an issue.

HYPOTHESES

- for dependent samples we set our hypotheses as

$$
\begin{aligned}
& H_{0}: P_{1}-P_{2}=0 \\
& H_{a}: P_{1}-P_{2} \neq 0
\end{aligned}
$$

SAMPLING DISTRIBUTION

- we need to know the sampling distribution and the standard error
- but first we need to design a contingency table that shows disagreement or dissimilarity in responses

	Group 2			
	NO			
	YES			
Group	YES	A	B	$A+B$
1	NO	C	D	$C+D$
		$A+C$	$B+D$	$A+B+C+D=n$

- A is the number of scores that are "no" in group 2 and "yes" in group 1
- B is the number of scores that are "yes" in group 2 and "yes" in group 1
- C is the number of scores that are "'no" in group 2 and "no" in group 1
- D is the number of scores that are "yes" in group 2 and "no" in group 1

CONTINGENCY TABLE

- we then convert these to proportions

	Group 2			
	NO			
	YES			
Group	YES	a	b	$a+b$
1	NO	c	d	$c+d$
		$a+c$	$b+d$	$a+b+c+d=1.0$

- $a=A / n$ is the proportion of scores that are "no" in group 2 and "yes" in group 1
- $b=B / n$ is the proportion of scores that are "yes" in group 2 and "yes" in group 1
- $c=C / n$ is the proportion of scores that are "'no" in group 2 and "no" in group 1
- $d=D / n$ is the proportion of scores that are "yes" in group 2 and "no" in group 1

PROPORTIONS

- from the contingency table we can get the proportions of scores with the trait we are interested in
- this is what we need for our statistic

$$
\begin{aligned}
& p_{1}=b+d=\frac{B+D}{n} \\
& p_{2}=a+b=\frac{A+B}{n}
\end{aligned}
$$

- but we need the contingency table for other reasons!

CONTINGENCY TABLES

- the sampling distribution is approximately normal with a mean of $P_{1}-P_{2}$ if

$$
A+D>10
$$

or

$$
B+C>10
$$

- if not, do not use this test
- moreover, our estimate of standard error of the difference between dependent proportions is

$$
s_{p_{1}-p_{2}}=\sqrt{\frac{a+d}{n}}=\sqrt{\frac{p_{d}}{n}}=\sqrt{\frac{(A+D) / n}{n}}
$$

- which we get from the contingency table

HYPOTHESIS TESTING

- so to actually carry out the test, we compute the test statistic

$$
z=\frac{\left(p_{1}-p_{2}\right)-\left(P_{1}-P_{2}\right)}{s_{p_{1}-p_{2}}}
$$

- or, since our null hypothesis is that $\left(P_{1}-P_{2}\right)=0$

$$
z=\frac{\left(p_{1}-p_{2}\right)}{s_{p_{1}-p_{2}}}
$$

- and then look up a p-value from the normal distribution calculator

EXAMPLE

- I took the Exam 1 grades and the Homework grades and for each student computed:
- Trait 1: Grade on Exam 1 is ≥ 70 (C range)
- Trait 2: Grade on Homework is ≥ 70 (C range)

	Homework Grade	
Exam 1		
0	1	
1	1	
0	1	
1	1	
1	1	
1	1	
0	1	
1	1	
1	1	
0	1	
0	1	
0	1	
1	1	
0	1	
0	1	
1	1	
1	1	
1	1	
0	1	
1	0	
1	1	
0	0	
0	1	
0	1	
0	1	
0	1	
1	0	
1	0	

EXAMPLE

- We can test for a difference in proportions using the on-line calculator:

		Has Trait 2?	
		No	Yes
Has Trait $1 ?$	Yes	$A=3$	$B=11$
	No	$C=1$	$D=13$

Specify hypotheses:
$H_{0}: P_{1}-P_{2}=0$
H_{a} : Two-tails
$\alpha=0.05$
Run Test

Test summary

Null hypothesis

$$
H_{0}: P_{1}-P_{2}=0
$$

Alternative hypothesis
$H_{a}: P_{1}-P_{2} \neq 0$
Type I error rate
$\alpha=0.05$
Sample size
$n=28$
Sample proportion for group $1 \quad p_{1}=0.5000$
Sample proportion for group $2 \quad p_{2}=0.8571$
Disagreement proportion $\quad p_{d}=0.5714$
Standard error
$s_{p_{1}-p_{2}}=0.142857$
Test statistic
$z=-2.500000$
p value
$p=0.012419$
Decision Reject the null hypothesis
Confidence interval critical value $z_{c v}=1.960395$
Confidence interval
$\mathrm{CI}_{95}=(-0.637199,-0.077086)$

ANOTHER EXAMPLE

- Suppose we want to know if there is a difference in the proportion of students that oppose the death penalty and the proportion of students that support gun control.
- Raise your hand if (feel free to lie if you do not want others to know your true opinions)
- A: You support gun control, but do not oppose the death penalty.
- B: You support gun control and oppose the death penalty.
- C: You do not support gun control and do not oppose the death penalty.
- D: You do not support gun control, but do oppose the death penalty.

CONTINGENCY TABLE

	OPPOSE DEATH PENALTY		
SUPPORT	NO YES		
GUN	YES		
CONTROL	NO		

- I want to test

$$
\begin{aligned}
& H_{0}: P_{1}-P_{2}=0 \\
& H_{a}: P_{1}-P_{2} \neq 0
\end{aligned}
$$

- In words: the proportion of people supporting gun control is the same as the proportion of people who oppose the death penalty (individuals are always pro-life or pro-death)
- I will use $\alpha=0.05$
- Note: Group 1 is the set of responses to the question about opposition to the death penalty
- Group 2 is the set of responses to the question about support of gun control

CRITERION

- I need to check if I can use the normal approximation to the sampling distribution
- check if

$$
A+D>10
$$

or

$$
B+C>10
$$

- if not, do not use this test
- We use the on-line calculator

INTERPRETATION

- If we reject H_{0}, that indicates the probability of getting the observed difference of proportions, or bigger difference, when the population parameters were equal is less than 0.05 . We interpret that as meaning the population parameters are different.
- If we fail to reject H_{0}, that indicates the probability of getting the observed difference of proportions, or bigger, when the population parameters were equal is greater than 0.05 . We do not have strong enough evidence to conclude that the population parameters are different.

CONFIDENCE INTERVAL

- easy to create confidence intervals too
- the general formula is

$$
\mathrm{Cl}=\text { statistic } \pm(\text { critical value }) \times(\text { standard error })
$$

- for the difference of dependent proportions it becomes

$$
C I=\left(p_{1}-p_{2}\right) \pm\left(z_{c v}\right)\left(s_{p_{1}-p_{2}}\right)
$$

POWER

- Computing power (and estimating minimum sample sizes) feels a bit awkward for dependent proportions
- Although you are testing the differences in proportions that have traits, the needed information is the proportions about disagreements across traits

Specify the population characteristics:
$H_{0}: P_{1}-P_{2}=0$
H_{a} : Enter the proportions for the disagreement cells of the
contingency table for the alternative hypothesis.

		Has Trait 2?	
		No	Yes
Has Trait 1?	Yes	$A / n=\square$	$B / n=$ NA
	No	$C / n=$ NA	$D / n=\square$

$H_{a}: P_{a 1}-P_{a 2}=$

Specify the properties of the test:
Type of test Two-tails
Type I error rate, $\alpha=0.05$
Power $=0.8$
Calculate minimum sample size
Sample size, $n=100$

- Let's look at an example

RETRIEVAL PRACTICE

- Studies have found that a good way to improve memory is to actively retrieve information from memory
- practice test instead of study
- A common study goes like: Each subject reads two paragraphs about different topics (e.g., photosynthesis or leukemia). After reading:
- For one paragraph the subject takes a practice test that requires them to recall information from the paragraph (e.g., "How does photosynthesis directly benefit our environment?")
- For the other paragraph, the subject reads the paragraph a second time.
- A week later, subjects are tested on both paragraphs (new questions)

RETRIEVAL PRACTICE

- Typical results for correctly answering the final questions are something like:
- Retrieval practice: $p_{1}=0.44$
- Study: $p_{2}=0.28$
- From the raw data (you typically cannot get this information from what is published in scientific papers)

		Has Trait 2?	
		No	Yes
Has Trait $1 ?$	Yes	$A=6$	$B=10$
	No	$C=20$	$D=0$

RETRIEVAL PRACTICE

- Suppose you want to explore retrieval practice in a new setting (statistics-related questions)
- The null hypothesis is no difference in proportions for retrieval versus study conditions

$$
H_{0}: P_{1}-P_{2}=0
$$

- the alternative hypothesis is that there is a some difference

$$
H_{a}: P_{1}-P_{2} \neq 0
$$

- You need a specific alternative hypothesis, and using the data from the previous study is a good starting point

$$
H_{a}: P_{1 a}-P_{a 2}=0.44-0.28=0.16
$$

- but you specify it by identifying the disagreements in responses

RETRIEVAL PRACTICE

- We need

$$
\begin{gathered}
a=\frac{A}{n}=\frac{6}{36}=0.1667 \\
d=\frac{D}{n}=\frac{0}{36}=0
\end{gathered}
$$

- Suppose you want 0.9 for power

Specify the population characteristics:
$H_{0}: P_{1}-P_{2}=0$
H_{a} : Enter the proportions for the disagreement cells of the contingency table for the alternative hypothesis.

		Has Trait 2?	
		No	Yes
Has Trait 1?	Yes	$A / n=0.1667$	$B / n=$ NA
	No	$C / n=$ NA	$D / n=0$

$H_{a}: P_{a 1}-P_{a 2}=0.1667-0 .=0.1667$
Specify the properties of the test:
Type of test Two-tails
Type I error rate, $\alpha=0.05$
Power $=0.9$
Sample size, $n=64$

RETRIEVAL PRACTICE

- You might argue that a one-tailed test

$$
H_{0}: P_{1}-P_{2}>0
$$

- is appropriate because you know retrieval practice helps in most settings
- Then, to have 0.9 power:

Specify the population characteristics:
$H_{0}: P_{1}-P_{2}=0$
H_{a} : Enter the proportions for the disagreement cells of the contingency table for the alternative hypothesis.

		Has Trait 2?	
		No	Yes
Has Trait 1?	Yes	$A / n=0.1667$	$B / n=$ NA
	No	$C / n=$ NA	$D / n=0$

$H_{a}: P_{a 1}-P_{a 2}=0.1667-0 .=0.1667$
Specify the properties of the test:
Type of test Positive one-tail
Type I error rate, $\alpha=0.05$
Power $=0.9 \quad$ Calculate minimum sample size
Sample size, $n=52$

CONCLUSIONS

- two-sample case
- dependent proportions
- confidence interval
- power

NEXT TIME

- Comparing two sample correlations
- Power

How careful are students?

