PSY 201: Statistics in Psychology
 Lecture 31
 Multiple testing
 Error is sneaky.

Greg Francis

Purdue University

Fall 2023

HYPOTHESIS TESTING

- we know how to test the difference of two means

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{a}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

- by using the t distribution and estimates of standard error
- what if you have more populations and what to know if they are all equal?

MULTIPLE t - TESTS

- if we have $K=5$ population means, we might want to compare each mean to all the others
- requires

$$
c=\frac{K(K-1)}{2}=10
$$

- different t-tests
- suppose each test is with $\alpha=0.05$
- What is the Type I error?

MULTIPLE t - TESTS

- we have a risk of making a type I error for each t test
- since we have $c=10$ different t-tests, with $\alpha=0.05$, the Type I error rate becomes approximately

$$
1-(1-\alpha)^{c}=0.40
$$

- bigger risk of error than you might expect!
- to be sure we do not make any Type I errors, we would need to set α much smaller to insure that Type I error rate is below 0.05!

ADJUST α

- To a first approximation, to make sure the Type I error rate for $c=10$ tests is less than 0.05 , you could set the α criterion for each t-test to be

$$
\alpha=\frac{0.05}{c}=\frac{0.05}{10}=0.005
$$

- Then, the probability of any given test producing a Type I error is 0.005 , and the probability than any of the 10 tests produces a Type I error is 0.05
- This is called the Bonferroni correction
- But decision making always involves trade offs.

ADJUST α

- What kind of power do we have?
- Suppose $\sigma=1$ and we take samples of size $n=50$ for each condition
- If you use $\alpha=0.005$, and one of the means, $\mu_{1}=0.5$, is truly different from the other four means, $\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}=0$. What is the probability you will reject H_{0} ?
- For the six tests that do not involve μ_{1}, the probability of any of them producing a Type I error is

$$
1-(1-0.005)^{6}=0.029
$$

ADJUST α

- For the four tests involving μ_{1}, we can estimate power of each test, by using the on-line power calculator:

Specify the population characteristics:

$$
\begin{aligned}
H_{0}: \mu_{1}-\mu_{2} & =0 \\
H_{a}: \mu_{a 1}-\mu_{a 2} & =0.5 \\
\sigma_{1} & =1 \\
\sigma_{2} & =1
\end{aligned}
$$

Or enter a standardized effect size

$$
\frac{\left(\mu_{a 1}-\mu_{a 2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma}=\delta=0.5
$$

\square
Specify the properties of the test:
Type of test Two-tails a
Type I error rate, $\alpha=0.005$
Power $=0.360487 \xi$
Calculate minimum sample size
Sample size for group 1, $n_{1}=50$
Sample size for group 2, $n_{2}=50$

POWER

- We have four chances for one of the tests involving μ_{1} to be significant, so the probably of at least one being significant is

$$
1-(1-0.360)^{4}=0.832
$$

- On the other hand, the probably that each of those four experiments will reject H_{0} is

$$
(0.360)^{4}=0.0168
$$

- So, you are almost surely going to draw some wrong conclusions

POWER

- If you want to have a 0.9 probability that all four tests involving μ_{1} reject H_{0}, each test needs a power of

$$
(0.9)^{1 / 4}=0.974
$$

- We can identify the required sample size for each condition

Specify the population characteristics:

$$
\begin{aligned}
H_{0}: \mu_{1}-\mu_{2} & =0 \\
H_{a}: \mu_{a 1}-\mu_{a 2} & =0.5 \\
\sigma_{1} & =1 \\
\sigma_{2} & =1
\end{aligned}
$$

Or enter a standardized effect size

$$
\frac{\left(\mu_{a 1}-\mu_{a 2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma}=\delta=0.5
$$

Specify the properties of the test:
Type of test Two-tails
Type I error rate, $\alpha=0.005$
Power= 0.974
Calculate minimum sample size
Sample size for group 1, $n_{1}=183$
Sample size for group 2, $n_{2}=183$

- this is an approximation because the tests are not independent

POWER

- Trying to control the error probabilities becomes complicated when you have multiple comparisons
- The probability of making at least one Type I error increases (power for detecting something increases)
- The probability of making at least one Type II error increases (power for the full set of differences decreases)
- This will always be true, but there are steps we can take to partially deal with the problem

DEMONSTRATION

- Open your five packages and count the number of green M\&M's in each package. You have five numbers, $n=5$, that make a sample
- within each sample, compute:

$$
\begin{gathered}
\bar{X}_{k}=\frac{\sum_{i} X_{k i}}{5} \\
s_{k}=\sqrt{\frac{\sum_{i} X_{k i}^{2}-\left[\left(\sum_{i} X_{k i}\right)^{2} / 5\right]}{4}}
\end{gathered}
$$

- Use the on-line calculator for Descriptive Statistics, if you want (use your phone). No need to log in.

DEMONSTRATION

- now, share your \bar{X}_{j} and s_{j} with your "neighbor" by following the arrows below
- get \bar{X}_{j} and s_{j} from your "neighbor"

DEMONSTRATION

- Run a hypothesis test to compare your mean to the mean of your neighbor
- we'll assume homogeneity of variance
- (1) State the hypothesis:

$$
\begin{aligned}
& H_{0}: \mu_{k}=\mu_{j} \\
& H_{a}: \mu_{k} \neq \mu_{j}
\end{aligned}
$$

- and set the criterion

$$
\alpha=0.05
$$

DEMONSTRATION

- (2) Compute test statistic:

$$
\begin{gathered}
s^{2}=\frac{\left(n_{k}-1\right) s_{k}^{2}+\left(n_{j}-1\right) s_{j}^{2}}{n_{k}+n_{j}-2}=\frac{(4) s_{k}^{2}+(4) s_{j}^{2}}{8}= \\
s_{\bar{X}_{k}-\bar{X}_{j}=\sqrt{s^{2}\left(\frac{1}{n_{k}}+\frac{1}{n_{j}}\right)}=\sqrt{s^{2}\left(\frac{1}{5}+\frac{1}{5}\right)}=}^{t=\frac{\left(\bar{X}_{k}-\bar{X}_{j}\right)-(0)}{s_{\bar{X}_{k}-\bar{X}_{j}}}=} \\
d f=n_{k}+n_{j}-2=8
\end{gathered}
$$

- (3) Compute the p-value using the t-distribution calculator
- Instead we will identify the $t_{c v}$ that corresponds to $p=0.05$. It is $t_{c v}=2.306$
- (4) Make a decision:

$$
t=\quad<?\rangle \quad= \pm 2.306
$$

DEMONSTRATION

- We know from the outset that H_{0} is actually true here.

$$
\mu_{k}=\mu_{j}
$$

- because all the samples are actually from the very same population (M\&M packages from the same factory have a fixed ratio of colors)
- Still, just due to sampling errors, we expect to have some tests reject H_{0}. The probability of at least one is around:

$$
1-(1-\alpha)^{c}=
$$

- where c is the number tests (number of students in the class)

WHAT DO WE MAKE OF THIS?

- Not only is it a pain to compute multiple comparisons of means
- but it tends to lead to more Type I error than α indicates
- we could decrease α to a smaller value so that the overall Type I error is how we want it
- which will decrease power

CONCLUSIONS

- testing multiple means
- loss of control of Type I error

NEXT TIME

- there is a better method
- ANOVA
- two measures of variance Measure twice, cut once.

