PSY 201: Statistics in Psychology Lecture 36 Power for Dependent ANOVA Leverage relationships.

Greg Francis

Purdue University

Fall 2023

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

HYPOTHESES

• The null for a dependent ANOVA is an *omnibus* hypothesis. It supposes no difference between any population means

$$H_0: \mu_i = \mu_j \forall i, j$$

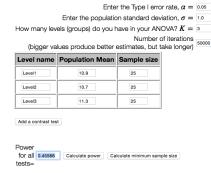
the alternative is the complement

$$H_a: \mu_i \neq \mu_j$$
 for some i, j

 To compute power, we have to provide the standard deviation, α, n, specific values for the means, and the correlation (ρ) between the different measures

POWER CALCULATOR

Consider a situation with K = 3 dependent means (all different from each other), n = 25, and ρ = 0:


-		have in your ANOVA? $K = 3$ Number of iterations er estimates, but take longer) 5000
	Population Mean]
Level1	10.9	
Level2	10.7	
Level3	11.3	
Add a contrast	test	

We estimate the power to be 0.45

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

INDEPENDENT CALCULATOR

• Since we have $\rho = 0$, the means are independent. Thus, we get nearly the same result with the independent means power calculator

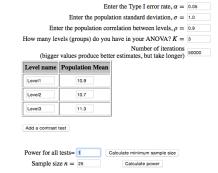
- We estimate the power to be 0.46
- when $\rho = 0$, the independent and dependent ANOVA are almost the same test

< □ > < □ > < □ > < □ > < □ > < □ >

- Increasing the correlation increases the power
- Consider a situation with K = 3 dependent means (all different from each other), n = 25, and ρ = 0.3:

		Enter the Type I error rate, $\alpha =$	0.05
	Enter the po	pulation standard deviation, $\sigma =$	1.0
Ent	er the population	correlation between levels, $\rho =$	0.3
How many lev	els (groups) do	you have in your ANOVA? $K =$	3
(bigger	values produce	Number of iterations better estimates, but take longer)	50000
Level name	Population Me	an	
Level1	10.9		
Level2	10.7		
Level3	11.3		
Add a contrast	test		
Power for all	tests= 0.60466	Calculate minimum sample size	
Sample siz	n = 25	Calculate power	

• We estimate the power to be 0.6


• Consider a situation with K = 3 dependent means (all different from each other), n = 25, and $\rho = 0.6$:

	En	ter the Type I error rate, $\alpha =$	0.05
	Enter the popula	ation standard deviation, $\sigma =$	1.0
Ent	er the population co	rrelation between levels, $\rho =$	0.6
How many lev	vels (groups) do you	have in your ANOVA? $K =$	3
(bigger	values produce bett	Number of iterations ter estimates, but take longer)	50000
Level name	Population Mean		
Level1	10.9		
Level2	10.7		
Level3	11.3		
Add a contrast	test	_	
Power for all	tests= 0.84974	Calculate minimum sample size	
Sample siz	e n = 25	Calculate power	

• We estimate the power to be 0.85

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• Consider a situation with K = 3 dependent means (all different from each other), n = 25, and $\rho = 0.9$:

• We estimate the power to be 1.0

< □ > < □ > < □ > < □ > < □ > < □ >

- Positive correlations are easy to imagine:
- e.g., reading scores in third, fourth, and fifth grades are positively correlated with each other
- It is plausible that the correlations are (nearly) the same for all variables
- Negative correlations for all variables would be weird
- e.g., GPA for athletes over three different sports seasons
- kind of suggests multiple factors influencing behavior
- for three measures, a negative correlation can be no stronger than $\rho=-0.5$
- the calculator will take your negative correlation and try to do something, but be skeptical about the results

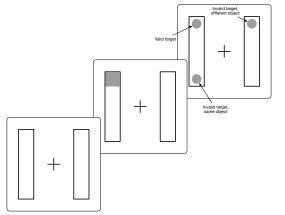
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

NEGATIVE CORRELATIONS

• Consider a situation with K = 3 dependent means (all different from each other), n = 25, and $\rho = -0.2$:

	Er	ter the Type I error rate, $\alpha =$	0.05
	Enter the popula	ation standard deviation, $\sigma =$	1.0
Ent	er the population co	rrelation between levels, $\rho =$	-0.2
How many lev	vels (groups) do you	have in your ANOVA? $K =$	3
(bigger	values produce bett	Number of iterations ter estimates, but take longer)	50000
Level name	Population Mean		
Level1	10.9		
Level2	10.7		
Level3	11.3		
		-	
Add a contrast	test		
Add a contrast		Calculate minimum sample size	

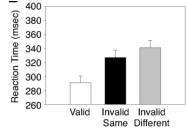
• We estimate the power to be 0.38 (worse than when $\rho = 0$)


(日) (四) (日) (日) (日)

OBJECT BASED ATTENTION

- The eye is (kind of) like a camera, with photoreceptors that are similar to pixels in a camera
- However, what people *see* corresponds to objects that are somehow "grouped" together
- We can *select* and *attend* some objects to the exclusion of other objects
- One way of measuring this property of visual perception is to study the "object based attention" effect

OBJECT BASED ATTENTION


- Measure reaction time (RT) to the target
- Dependent design: each subject provides data for 3 types of targets

★ ∃ ▶

PREVIOUS DATA

• A study by Marrara & Moore (2003) found the following results for n = 19:

- ANOVA finds: $F_{2,36} = 100.63$, $p \approx 0$
- Contrast for RT on valid trials vs. RT on invalid-same trials: $t_{36} = 11.76$
- Contrast for RT on invalid-same trials vs. RT on invalid-different trials: $t_{36} = 4.13$ (this is the object based attention effect)

REPLICATION

- The study was done 15 years ago (before everyone spent all day staring at a phone). You might want to repeat it with current students to make sure the object based attention effect still exists.
- To design your experiment, you can use the original data to do a power analysis. It takes a bit of effort, but you find that the data has:

$$\overline{X}_{Valid} = 291$$
, $\overline{X}_{InvalidSame} = 327$, $\overline{X}_{InvalidDifferent} = 341$
 $s = 45.5$, $r = 0.95$

< □ > < □ > < □ > < □ > < □ > < □ >

POWER CALCULATOR

• For just the ANOVA

	Enter the po	pulation standard deviation, σ = 4	5.5
Enter	the population	n correlation between levels, $ ho$ = 0.	.95
How many lev	els (groups) de	o you have in your ANOVA? $K = 3$	
(bigger va	lues produce	Number of iterations better estimates, but take longer)	000
Level name	Population I	Mean	
Valid	291		
InvalidSame	327		
InvalidDiffere	341		
Add a contrast test	t		
Power fo	or all 0.9	Calculate minimum sample size	
Sample size	<i>n</i> = 3	Calculate power	

• To have 90% power, we need only 3 subjects (if the effects are similar to the original study)

Enter the Type I error rate, $\alpha = 0.05$

A B A A B A

POWER CALCULATOR

- We can add the contrasts:
- Now, we need n = 12 to get 90% power

	Ent	ter the Type I error rate, $lpha=$	0.05
	Enter the populat	tion standard deviation, $\sigma =$	45.5
Enter	the population con	relation between levels, $ ho =$	0.95
How many lev	els (groups) do you	have in your ANOVA? $K =$	
(bigger va	lues produce bette	Number of iterations r estimates, but take longer)	5000
Level name	Population Mean	1	
Valid	291		
[

Add a contrast test

341

Specify hypotheses for Contrast1				
Ho: 1 Uvalid + -1 UnvalidSame + 0 UnvalidDifferent = 0				
H _a : Two-tails ♀				
Q 0.05				
Specify hypotheses for Contrast2				
Ho: 0 Pvalid + 1 PinvalidSame + -1 PinvalidDifferent = 0				
Ha: Two-tails				
Q 0.05				
Power for all 0.9 Calculate minimum sample size				
Sample size $n = 12$				

CORRELATION

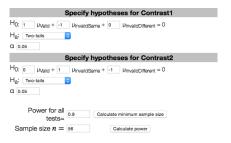
- The original study found r = 0.95, which seems rather high. Maybe we think it should be smaller, say r = 0.75.
- What is the impact on power if we use *n* = 12?
- Power drops to 0.28!

Enter the population standard deviation, $\sigma = 45.5$ Enter the population correlation between levels, $\rho = 0.75$ How many levels (groups) do you have in your ANOVA? K = 3Number of iterations 5000 (bigger values produce better estimates, but take longer) Level name Population Mean Valid 291 InvalidSame 327 InvolidDiffere 341 Add a contrast test Specify hypotheses for Contrast1 Ho 1 Uh/aliri + -1 UnvoldSame + 0 UnvoldDifferent = 0 Ha: Two-tails C 0.05 Specify hypotheses for Contrast2 Ho: 0 Pvalid + 1 PinvalidSame + -1 PinvalidDifferent = 0 Ha: Two-tails Q 0.05 Power for all 0.2836 Calculate minimum sample size tests= Sample size n = 12Calculate power Test Estimated Power ANOVA 0.9984 Contrast1 0.9602 Contrast2 0.309

< □ > < □ > < □ > < □ > < □ > < □ >

Enter the Type I error rate, $\alpha = 0.05$

CORRELATION


- Enter the Type I error rate, $\alpha = 0.05$
- Enter the population standard deviation, $\sigma=$ 45.5
- Enter the population correlation between levels, ho = 0.75
- How many levels (groups) do you have in your ANOVA? K = 3
 - Number of iterations

(bigger values produce better estimates, but take longer)

- The original study found r = 0.95, which seems rather high. Maybe we think it should be smaller, say r = 0.75. What sample size do we need to have 90% power?
- Need n = 56! The correlation makes a *big* difference in dependent means experiments

Level name	Population Mean
Valid	291
InvalidSame	327
InvalidDiffere	341

Add a contrast test

< 回 > < 三 > < 三 >

CONCLUSIONS

- power for dependent ANOVA
- power for contrasts

- 4 回 ト 4 ヨ ト 4 ヨ ト

NEXT TIME

- Catch all
- Challenges with hypothesis testing
- Questionable Research Practices

Tell the truth!

(4) (5) (4) (5)