PSY 201: Statistics in Psychology
 Lecture 03
 Plots
 Why the space shuttle blew up.

Greg Francis

Purdue University

Fall 2019

DATA

GOAL:

- organize data in a way that helps us understand it
- often take advantage of visual interpretations
- particularly important for very large sets of data

GRAPHS

- plot one variable against another

PLOTTING

- you make a graph to convey information
- place the dependent variable on the y-axis and the independent variable on the x-axis

- avoid everything else that might get in the way!

SPACE SHUTTLE

- January 28, 1986
- O-ring leaked
- the Challenger exploded 59 seconds after liftoff

SPACE SHUTTLE

- January 28, 1986
- O-ring leaked
- the Challenger exploded 59 seconds after liftoff

SPACE SHUTTLE

- the night before engineers warned O-rings would leak in cold (29°) weather
- the engineers failed to make their case, and the shuttle blew up
- they failed to present their data in a way to convince others

THE DATA

- previous launches showed damage to the O-rings increased as temperature got colder

THE MISTAKES

- when trying to convince NASA scientists to cancel the liftoff engineers:
- used tables (not bad by itself, but a graph is often more convincing)

| | $H I S T O R Y$ OF O-RING TEMPERATURES |
| :---: | :---: | :---: | :---: | :---: |
| (DEGREES-F) | |

- distributed information across several tables

THE MISTAKES

- when trying to convince NASA scientists to cancel the liftoff engineers:
- cluttered graphics with irrelevant information (motor type, date of launch,...)

THE MISTAKES

- when trying to convince NASA scientists to cancel the liftoff engineers:
- failed to point out that all good launches were in warm temperatures
- failed to point out that the forecasted temperature (29°) was much colder than for any other launch (good or bad)

THE LESSON

- when trying to convince someone of something, you must present it properly
- avoid fancy graphics and 3D perspectives
- keep it simple
- present the right information
- will go over some basics of graphing...

GRAPH

- using a small data set of four student's grades

GRAPH

- using a small data set of four student's grades

- what measurement scale is the student variable?
- what measurement scale is the score variable?

DATA CURVE

- it sometimes helps to connect the points
- How well did the third student do?
- changing the axis' scale makes the information look different, even though it isn't
- what matters is whether the graph conveys the intended information!

GRAPH TYPE

- type of data determines what type of graph to draw
- previous graph plotted ratio (or interval) data against nominal data
- consider the following data

Make of Automobile	Repair Rate (per 1000 sold)
A	4.2
B	6.8
C	3.3
D	0.4
E	1.2

- the graph should not suggest continuity of automobile make

WHICH IS BETTER?

SCATTERGRAMS

- sometimes you want to look at co-occurrences of data

Student	Academic Ability Score	Hours of Mathematics
1	54	18
2	29	3
3	42	14
4	60	23
5	33	15
6	28	7
7	56	22
8	48	18
\ldots	\ldots	\ldots

SCATTERGRAMS

GRAPHS

- Very useful for giving an overview of many types of data sets
- Useful for identifying trends in the data and relationships between variables
- Limited in that they depend on the viewer's interpretive abilities and sometimes graphs breakdown for really big or really small data sets
- We prefer more quantitative approaches

FREQUENCY

- for large data sets we cannot present all the scores
- we often look at the number or frequency of scores within certain limits
- we look at how scores are spread out across different values
- this reduces the number of presented scores and improves understanding

CLASS INTERVAL

Terminology

- width: exact upper limit - exact lower limit
- midpoint: value halfway between upper limit and lower limit
- exact limits: exact boundaries of interval
- matter when we start to work with frequency distributions!

- score limits: highest and lowest possible scores that fall in the interval

FREQUENCIES

- compare a set of scores
$95,22,45,45,12,79,83,46,89,96,75,33,86,57,69,94,83,75$, 77, 88, 92, 85, 31, 69
- to frequencies

Class Interval	f
$10-19$	1
$20-29$	1
$30-39$	2
$40-49$	3
$50-59$	1
$60-69$	2
$70-79$	4
$80-89$	6
$90-99$	4

FREQUENCIES

- ADVANTAGES
- easier to see distribution of scores
- easier to interpret data
- DISADVANTAGES
- loss of information
- individual scores are missing
- midpoint score is often best guess
- often use frequency information to supplement other information (depends on your needs)

HISTOGRAMS

frequency versus score class interval

FREQUENCY POLYGON

CUMULATIVE FREQUENCIES

- frequency distribution tells us how many scores in each class interval
- cumulative frequency distribution tells us how many scores in all class intervals below a specific score

Midpoint	f	cf
67	6	180
62	15	174
57	37	159
52	30	122
47	42	92
42	22	50
37	18	28
32	7	10
27	2	3
22	1	1

CUMULATIVE FREQUENCY DISTRIBUTION

Note: the point on the polygon has it's x-coordinate at the upper limit of the corresponding class interval

PERCENTAGES

$\%=\frac{\text { frequency }}{\text { total number of scores }}$	Midpoint	f	cf	\%	c\%
	67	6	180	3.33	100
	62	15	174	8.33	96.67
	57	37	159	20.56	88.34
	52	30	122	16.67	67.78
$\mathrm{c} \%=\frac{\text { cumulative frequency }}{\text { total number of scores }}$	47	42	92	23.33	51.11
	42	22	50	12.22	27.78
	37	18	28	10.00	15.56
	32	7	10	3.89	5.56
	27	2	3	1.11	1.67
	22	1	1	0.56	0.56

OGIVE

- plot cumulative frequency percentage against upper score class interval
- gives percentile points (next time)

FREQUENCY DISTRIBUTIONS

- useful to compare shapes
- any shape is possible
- some shapes are particularly important
- uniform distribution
- skewed distribution (long tail)
- symmetric distribution
- normal distribution
- kurtosis (peakedness)

DISTRIBUTIONS

DISTRIBUTIONS

- with large data sets you have to group data together to make it manageable
- how you do it can sometimes have a profound effect on what people conclude
- consider revenue from a company: grouped by quarterly revenue

DISTRIBUTIONS

- now look at the data when grouped by fiscal or calendar year

DISTRIBUTIONS

- with computers people can now sift through huge amounts of data and present only those graphs that support what they want you to think
- a suspicious person might presume that the graphs you do see are the best possible for advancing the presenter's view
- the only way out of this is to either trust the presenter, or have access to the data and and knowledge to understand it

HONESTY

- so how you define class intervals can determine how you (or someone else) will interpret the data
- statistics don't lie (they are just numbers)
- but you could (and some people do) select certain statistics to make people believe one thing versus another
- the only thing you can do about this effect is to be aware that it exists
- you need to be aware of the limitations of the data and be on guard against things that might influence you

CONCLUSIONS

- graphing
- frequencies
- distributions
- remember: the goal is to correctly present information

NEXT TIME

- percentiles
- percentile ranks

How to score the SAT.

