PSY 201: Statistics in Psychology Lecture 04 Describing distributions How to score the SAT.

Greg Francis

Purdue University

Fall 2019

DISTRIBUTIONS

- As we saw last time, a well-drawn graph conveys a lot of useful information...
- but a poorly drawn graph can mislead and confuse.
- We would like a **quantitative** method of describing distributions
- may not entirely avoid misinformation, but at least the limitations will be identifiable

FREQUENCY DISTRIBUTIONS

- A data set of exam scores can be described in many ways
 - frequency versus score class interval

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

CUMULATIVE

• A data set of exam scores can be described in many ways

TABLE FORMAT

- A data set of exam scores can be described in many ways
 - frequency table

Exact					
Limits	Midpoint	f	cf	%	с%
64.5-69.5	67	6	180	3.33	100
59.5-64.5	62	15	174	8.33	96.67
54.5-59.5	57	37	159	20.56	88.34
49.5–54.5	52	30	122	16.67	67.78
44.5–49.5	47	42	92	23.33	51.11
39.5–44.5	42	22	50	12.22	27.78
34.5-39.5	37	18	28	10.00	15.56
29.5-34.5	32	7	10	3.89	5.56
24.5-29.5	27	2	3	1.11	1.67
19.5-24.5	22	1	1	0.56	0.56

Greg Francis (Purdue University)

A (10) N (10) N (10)

DISTRIBUTION USES

- summarize data
- indicate most frequent data values
- indicate amount of variation across data values
- allows us to interpret a single score in the context of other scores
- we will explore quantitative methods to describe distributions

PERCENTILE

- point in a distribution at (or below) which a given percentage of scores is found
- written as

Ppercentage

- 28th percentile is written as P₂₈
- 99th percentile is written as P₉₉
- ...

PERCENTILE

- what are the data values for the lowest 60% of the population?
- several steps
 - **1** Find out how many data values make up 60% of the population.
 - Pind the lowest class interval in the cumulative frequency distribution that includes at least that many data values.
 - Setimate how far into the class interval you must go to reach exactly the percentile.
- works for any percentage!

find P₆₀ using the above data set of scores
 (1) number of scores making up 60% of student scores is

(180)(0.60) = 108

In general, calculate

(n)(p)

where n is the size of the population (number of scores) and p is the percentage in decimal form

(2) lowest class interval in the cf including 108 scores is with midpoint 52

Exact					
Limits	Midpoint	f	cf	%	с%
64.5–69.5	67	6	180	3.33	100
59.5-64.5	62	15	174	8.33	96.67
54.5-59.5	57	37	159	20.56	88.34
49.5–54.5	52	30	122	16.67	67.78
44.5–49.5	47	42	92	23.33	51.11
39.5–44.5	42	22	50	12.22	27.78
34.5–39.5	37	18	28	10.00	15.56
29.5-34.5	32	7	10	3.89	5.56
24.5-29.5	27	2	3	1.11	1.67
19.5–24.5	22	1	1	0.56	0.56

< □ > < 同 > < 回 > < 回 > < 回 >

- so we know that the percentile is somewhere between 49.5 and 54.5.
 We want a more precise estimate
- we need to know
 - width of class interval (5)
 - frequency of scores in the class interval containing the percentile point (30)
 - exact lower limit of class interval containing the percentile point (49.5)
 - cf of scores below the class interval containing the percentile point (92)
 - remaining number of scores in class interval containing the percentile point (108 - 92 = 16)

A B A A B A

- estimate of percentile point
- go into the interval the remaining (unaccounted for) percentage

$$P_X = II + \left(\frac{np - cf}{f_i}\right)(w)$$

• II = exact lower limit of the interval containing the percentile point

- *n* = total number of scores
- p = X/100, proportion corresponding to percentile (decimal form)
- *cf* = cumulative frequency of scores **below** the interval containing the percentile point
- f_i = frequency of scores in the interval containing the percentile point
- w = width of class interval

PERCENTILE RANK

- given a particular data value, what percentage of data values are smaller?
- e.g. given a score on a test, what percentage of scores were lower?
- sort of the reverse of percentile
- for a data value of 39, we write the percentile rank as

PR_{39}

• (Used on achievement tests!)

OGIVE

• plot cumulative frequency percentage against score class interval (gives percentile rank)

$$PR_X = \left\{\frac{cf + (f_i)(X - II)/w}{n}\right\} (100)$$

- X = score for which percentile rank is to be determined
- *cf* = cumulative frequency of scores **below** the interval containing the score *X*
- II = exact lower limit of the interval containing X
- w = width of class interval containing X
- f_i = frequency of scores in the interval containing X
- *n* = total number of scores

$$PR_{X} = \left\{ \frac{cf + (f_{i})(X - II)/w}{n} \right\} (100)$$

$$PR_{39} = \left\{ \frac{10 + (18)(39 - 34.5)/5}{180} \right\} (100)$$

$$PR_{39} = 14.556$$

$$\left\{ \frac{10 + (18)(39 - 34.5)/5}{180} \right\} (100)$$

< □ > < □ > < □ > < □ > < □ >

LIMITATIONS

- percentiles help *describe* a data value relative to its frequency distribution
- but they have some drawbacks
 - percentiles use an ordinal scale
 - equal differences in percentiles do not indicate equal differences in raw scores!
 - class intervals with higher frequency cover a broader range of percentiles (steeper part of ogive)

LIMITATIONS

- percentiles exaggerate differences in scores when lots of people have similar scores
- underestimate actual differences when lots of people have very different scores
- differences in percentiles should **not** be compared across different distributions!!!
 - only provide information on relative ranking of scores: ordinal scale!
 - cannot be meaningfully averaged, summed, multiplied,...
- fixing these problems requires additional terms for describing distributions (central tendency)

A B A A B A

CONCLUSIONS

- percentiles
- percentile ranks

A D N A B N A B N A B N

NEXT TIME

- central tendency
 - mode
 - median
 - mean

Does a company deserve a tax break?

< □ > < 同 > < 回 > < 回 > < 回 >