PSY 201: Statistics in Psychology

Lecture 06
Variability
How to make IQ scores look good.

Greg Francis

Purdue University

Fall 2019

DESCRIPTION

- central tendency gives an indication of where most, many, or average, scores are
- also want some idea of how much variability exists in a distribution of scores
 - range
 - mean deviation
 - variance
 - standard deviation

RANGE

• Highest score - lowest score

Name	Sex	Score	
Greg	Male	95	
lan	Male	89	
Aimeé	Female	94	
Jim	Male	92	

95 - 89 = 6

PROBLEM

• range is **very** sensitive to "extreme" scores

g ,			
Name	Sex	Score	
Greg	Male	95	
lan	Male	89	
Aimeé	Female	94	
Jim	Male	92	
Bob	Male	32	

- 95 32 = 63
- one score makes a big difference!

MEAN DEVIATION

- we can decrease sensitivity to extreme scores by considering deviations from a measure of central tendency
- a deviation score is

$$x_i = X_i - \overline{X}$$

• we define the mean deviation as:

$$MD = \frac{\Sigma |X_i - \overline{X}|}{n} = \frac{\Sigma |x_i|}{n}$$

- where $|x_i|$ means: "absolute value of x_i "
- why do we take the absolute value instead of just summing deviations?

VARIANCE

- mean deviation turns out to be mathematically messy
- squaring also removes minus signs!
- sum of squares

$$SS = \Sigma (X_i - \overline{X})^2 = \Sigma (x_i)^2$$

- variance is the average sum of squares
- calculation depends on whether scores are from a population or a sample

POPULATION

- a population includes all members of a specified group
- variance is defined as:

$$\sigma^2 = \frac{SS}{N} = \frac{\Sigma(X_i - \mu)^2}{N} = \frac{\Sigma(x_i)^2}{N}$$

- where
 - $\blacktriangleright \mu$ is the mean of the population
 - ▶ *N* is the number of scores in the population

SAMPLE

- a sample includes a **subset** of scores from a population
- variance is defined as:

$$s^2 = \frac{SS}{n-1} = \frac{\sum (X_i - \overline{X})^2}{n-1} = \frac{\sum (x_i)^2}{n-1}$$

- where
 - $ightharpoonup \overline{X}$ is the mean of the sample
 - n is the number of scores in the sample
- why the differences? Don't worry for now. Just know the calculations.

SAMPLE VARIANCE

deviation formula:

$$s^2 = \frac{\Sigma(x_i)^2}{n-1}$$

• alternative (but equivalent) calculation is the raw score formula

$$s^{2} = \frac{SS}{n-1} = \frac{\Sigma(X_{i})^{2} - [(\Sigma X_{i})^{2}/n]}{n-1}$$

use whichever formula is simpler!

EXAMPLE

Name	Sex	Score
Greg	Male	95
lan	Male	89
Aimeé	Female	94
Jim	Male	92

 since we have the raw scores, we use the raw score formula (we assume a sample)

$$s^{2} = \frac{SS}{n-1} = \frac{\Sigma(X_{i})^{2} - [(\Sigma X_{i})^{2}/n]}{n-1}$$
$$\Sigma X_{i}^{2} = (95)^{2} + (89)^{2} + (94)^{2} + (92)^{2} = 34246$$

$$(\Sigma X_i)^2/n = (95 + 89 + 94 + 92)^2/4 = \frac{(370)^2}{4} = \frac{136900}{4} = 34225$$

SO,

$$s^2 = \frac{34246 - 34225}{3} = \frac{21}{3} = 7$$

SUM OF SQUARES

earlier we calculated the squared deviation from the mean

$$\sum x_i^2 = \sum (X_i - \overline{X})^2$$

$$= (95 - 92.5)^{2} + (89 - 92.5)^{2} + (94 - 92.5)^{2} + (92 - 92.5)^{2}$$
$$= (2.5)^{2} + (-3.5)^{2} + (1.5)^{2} + (-0.5)^{2} = 0$$
$$= 6.25 + 12.25 + 2.25 + 0.25 = 21.0$$

we can use that to calculate variance with the deviation score formula:

$$s^2 = \frac{\sum x_i^2}{n-1} = \frac{21}{3} = 7$$

- Same as before!
- Note! variance cannot be negative

STANDARD DEVIATION

- variance is in squared units of measurement
 - distance: squared meters
 - weight: squared kilograms
 - temperature: squared degrees
 - **.**..
- standard deviation is in the same units as the scores!
- square root of variance

STANDARD DEVIATION

deviation score formula:

$$s = \sqrt{s^2} = \sqrt{\frac{SS}{(n-1)}} = \sqrt{\frac{\Sigma(x_i)^2}{(n-1)}}$$

• raw score formula:

$$s = \sqrt{s^2} = \sqrt{\frac{SS}{(n-1)}} = \sqrt{\frac{\Sigma(X_i)^2 - [(\Sigma X_i)^2 / n]}{n-1}}$$

EXAMPLE

Name	Sex	Score	
Greg	Male	95	
lan	Male	89	
Aimeé	Female	94	
Jim	Male	92	

 since we have the raw scores, we use the raw score formula to calculate variance

$$s^{2} = \frac{SS}{n-1} = \frac{\Sigma(X_{i})^{2} - [(\Sigma X_{i})^{2}/n]}{n-1}$$

we calculated earlier that the variance equals:

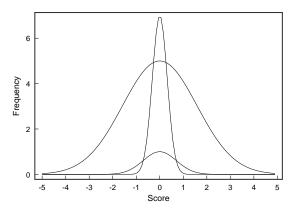
$$s^2 = \frac{34246 - 34225}{3} = \frac{21}{3} = 7$$

and then the standard deviation equals:

$$s = \sqrt{s^2} = \sqrt{7} = 2.646$$

WHY BOTHER?

- the value of the standard deviation gives us an idea of how spread out scores are
- larger standard deviations indicate that scores are more spread out



WHY BOTHER?

- we will use standard deviation to let us estimate how different a score is relative to the central tendency of the distribution
- we can then compare (in a certain sense) across distributions!

STANDARD SCORE

also called z-score

$$\mathsf{Standard} \ \mathsf{score} = \frac{\mathsf{raw} \ \mathsf{score} - \mathsf{mean}}{\mathsf{standard} \ \mathsf{deviation}}$$

$$z = \frac{X - \overline{X}}{s}$$

 indicates the number of standard deviations a raw score is above or below the mean

EXAMPLE

if

$$\overline{X} = 26$$

and

$$s = 4$$

- and you have (among others) the scores $X_1=16$, $X_2=32$, $X_3=28$
- then

$$z_1 = \frac{X_1 - \overline{X}}{s} = \frac{16 - 26}{4} = -2.5$$

$$z_2 = \frac{X_2 - \overline{X}}{s} = \frac{32 - 26}{4} = 1.5$$

$$z_3 = \frac{X_3 - \overline{X}}{5} = \frac{28 - 26}{4} = 0.5$$

PROPERTIES

- when a raw score is **above** the mean, its z-score is positive
- when a raw score is **below** the mean, its z-score is negative
- when a raw score **equals** the mean, its z-score is zero
- absolute size of the z-score indicates how far from the mean a raw score is

UNITS

- z-scores work in units of standard deviation
- new numbers for same information!
- just like converting units for other familiar measures
 - length: feet into meters, miles into kilometers
 - weight: pounds into kilograms
 - temperature: fahrenheit into celsius
 - data: raw score units into standard deviation units
- trick!: standard deviation units depend on your particular set of data!

PROPERTIES

- z-scores are data
- we can find distributions, means, and standard deviations
- special properties of z-score distributions
 - The shape of the distribution of standard scores is identical to that of the original distribution of raw scores.
 - ▶ The mean of a distribution of z-scores will always equal 0.
 - ► The variance (and standard deviation) of a distribution of z-scores always equals 1.

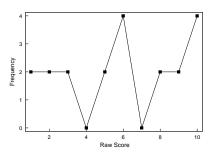
EXAMPLE

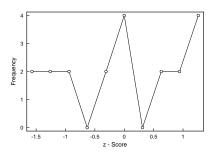
- A simple data set to play with
 - when a raw score is above the mean, its z-score is positive
 - when a raw score is **below** the mean, its z-score is negative
 - when a raw score equals the mean, its z-score is zero
 - absolute size of the z-score indicates how far from the mean a raw score is

6			
Subject	Raw score	z-score	
1	10	1.26	
2	9	0.94	
3	3	-0.94	
4	10	1.26	
5	9	0.94	
6	2	-1.26	
7	2	-1.26	
8	10	1.26	
9	5	-0.31	
10	5	-0.31	
11	1	-1.57	
12	6	0.0	
13	8	0.63	
14	6	0.0	
15	6	0.0	
16	1	-1.57	
17	3	-0.94	
18	6	0.0	
19	10	1.26	
20	8	0.63	
n = 20			
\overline{X}	6.0	0.0	
s	3.18	1.0	

EXAMPLE

- compare distributions of raw scores and z-scores
- shape is the same





USES

- suppose we want to compare the scores of a student in several classes
- we know the student's score, the mean score, the standard deviation, and the student's z-score

Subject	X	\overline{X}	S	Z
Psychology	68	65	6	0.50
Mathematics	77	77	9	0.00
History	83	89	8	-0.75

- comparison of raw scores suggests that student did best in history, mathematics, then psychology
- comparison of z-scores suggests that student did best in psychology, mathematics, then history (relative to other students)

TRANSFORMED SCORES

- sometimes z-scores are unattractive
 - zero mean
 - negative values
- need to convert same information into a new distribution with a new mean and standard deviation

$$X'=(s')(z)+\overline{X}'$$

- where
 - ightharpoonup X' = new or transformed score for a particular individual
 - ightharpoonup s' = desired standard deviation of the distribution
 - ightharpoonup z = standard score for a particular individual
 - $\overline{X}' =$ desired mean of the distribution

TRANSFORMED SCORES

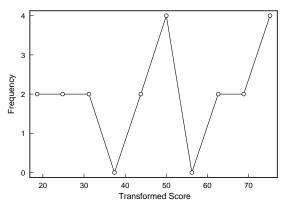
- GOAL: make data understandable; IQ scores, personality tests,...
- NOTE: you can change the mean and standard deviation all you want, but it does not change the information in the data
- shape remains the same!
 - conversion back to z-scores would produce the same z-scores!
 - a percentile maps to the corresponding transformed score

TRANSFORMED SCORES

• if we transform the scores from our earlier data set using

$$X' = 20X + 50$$

• we get



CONCLUSIONS

- variance
- standard deviation
- standard scores

NEXT TIME

- a very important distribution
- normal distribution

Describing everyone's height.