PSY 201: Statistics in Psychology
 Lecture 07
 Normal distribution
 Describing everyone's height.

Greg Francis

Purdue University

Fall 2019

DISTRIBUTION

- frequency of scores plotted against score

- frequency \rightarrow likelihood, probability

GOAL

- describe (summarize) distributions
- shape: unimodal, bimodal, skew,...
- central tendency: mode, median, mean
- variation: range, variance, standard deviation
- summarizing forces you to lose information
- some theoretical distributions are special!
- a few numbers completely specify the distribution

NORMAL DISTRIBUTION

$$
Y=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(X-\mu)^{2} / 2 \sigma^{2}}
$$

- Y height of the curve for any given value of X in the distribution of scores
- π mathematical value of the ratio of the circumference of a circle to its diameter. A constant (3.14159.....)
- e base of the system of natural logarithms. A constant (2.7183...)
- μ mean of the distribution of scores
- σ standard deviation of a distribution of scores
sometimes written as

$$
Y=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-(X-\mu)^{2} / 2 \sigma^{2}\right]
$$

PARAMETERS

- a family of distributions
- member of the family is designated by the mean μ and standard deviation σ
- changing μ shifts the curve to the left or the right
- shape remains the same

PARAMETERS

- changing σ changes the spread of the curve
- compare normal distributions for $\sigma=1$ and $\sigma=2$, both with $\mu=3$

PARAMETERS

- changing μ and σ together produces predictable results

PROPERTIES

- all normal distributions have the following in common
- Unimodal, symmetrical, bell shaped, maximum height at the mean.
- A normal distribution is continuous. X must be a continuous variable, and there is a corresponding value of Y for each X value.
- A normal distribution asymptotically approaches the X axis.

STANDARD NORMAL

- remember z-scores:
- 0 mean
- 1 standard deviation
- if the z-scores are normally distributed

$$
Y=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(X-\mu)^{2} / 2 \sigma^{2}}
$$

- becomes

$$
Y=\frac{1}{1 \sqrt{2 \pi}} e^{-(z-0)^{2} / 2\left(1^{2}\right)}
$$

- or

$$
Y=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

STANDARD NORMAL

- looks like

SIGNIFICANCE

- It turns out that lots of frequency distributions can be described as a normal distribution
- for example, an estimate of height

SIGNIFICANCE

- It turns out that lots of frequency distributions can be described as a normal distribution
- intelligence scores
- weight
- reaction times
- judgment of distance
- rating of personality
- almost any situation where small independent components come together

SIGNIFICANCE

- when the distribution is a normal distribution, we can describe the distribution by just specifying
- Mean: \bar{X}
- Standard deviation: s
- Noting it is a normal distribution
- that's all we need!
- That's part of our goal: describe distributions

STANDARD NORMAL

- assume you have a standard normal distribution (don't worry about where it came from)

$$
Y=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

- if your distribution is normal, you can create a standard normal by converting to z-scores

USE

- same as all other distributions
- identify key aspects of the data
- percentiles
- percentile rank
- proportion of scores within a range
- ...
- make it easier to interpret data significance!

STANDARD NORMAL

- total area under the curve always equals 1.0
- area under the curve from the mean (0) to one tail equals 0.5

STANDARD NORMAL

- area under the curve one standard deviation away from the mean is approximately 0.3413
- area under the curve two standard deviations away from the mean is approximately 0.4772
- area under the curve three standard deviations away from the mean is approximately 0.4987

CONCLUSIONS

- normal distribution
- equations
- properties
- standard normal equations

NEXT TIME

- area under the curve
- proportions
- percentiles
- percentile ranks

Business decisions.

