# PSY 201: Statistics in Psychology 

Lecture 08
Normal distribution
Business decisions.

Greg Francis

Purdue University

Fall 2019

## NORMAL DISTRIBUTIONS

- when the distribution is a normal distribution, we can describe the distribution by just specifying
- Mean: $\bar{X}$
- Standard deviation: s
- Noting it is a normal distribution
- that's all we need!
- That's part of our goal: describe distributions


## USE

- same as all other distributions
- identify key aspects of the data
- percentiles
- percentile rank
- proportion of scores within a range
- ...
- make it easier to interpret data significance!


## AREA UNDER CURVE

- proportional to the frequency of scores within the designated endpoints
- suppose you want to know the proportion of scores between the mean and another score ( $z$-score)



## AREA UNDER CURVE

- solving for the area requires calculus and numerical analysis (ack!)
- fortunately, we can also use computers
- our text provides

Normal Distribution Calculator


## CALCULATOR

- how would you find the area between $z=-0.3$ and $z=2.4$ ?



## CALCULATOR

- how would you find the area below $z=1.4$ ?



## PROPORTIONS

- suppose you have 250 scores from a test that are normally distributed
- you want to know how many scores are between 1.0 standard deviations below the mean and 1.5 standard deviations above the mean
- two steps
(1) calculate the area under the standard normal between $z=-1.0$ and $z=1.5$.
(2) convert the area under the curve to number of scores


## PROPORTIONS



- We find that $77.45 \%$ of the scores lie between one standard deviation below the mean and 1.5 standard deviations above the mean
- so how many scores are in that range?
- multiply the total number of scores (250) with the percent in the range (decimal form)

$$
(0.7745) \times(250)=193.625 \approx 194
$$

## PROPORTIONS

- suppose you have 250 scores from a test that are normally distributed
- you want to know how many scores are below 0.5 standard deviations above the mean, and how many scores are beyond 2.5 standard deviations above the mean.
- two steps
(1) calculate the area under the standard normal below $z=0.5$ and above $z=2.5$.
(2) convert the area under the curve to number of scores


## PROPORTIONS



- We find that $69.77 \%$ of the scores lie below 0.5 standard deviation above the mean or beyond 2.5 standard deviations above the mean
- so how many scores are in that range?
- multiply the total number of scores (250) with the percent in the range (decimal form)

$$
(0.6997) \times(250)=174.925 \approx 175
$$

## PERCENTILES

- $X$ th percentile is score for which $X$ percent of scores fall at or below
- 50th percentile is the median (and the mean!)



## PERCENTILES

- The Inverse Normal Calculator gives the $z$-score that corresponds to different areas
- Click "Below" to make it fill in from the left side

Inverse Normal Distribution Calculator


## EXAMPLE

- to find $P_{75}$ for a standard normal curve, enter Area $=0.75$
- and find that the corresponding $z$-score is 0.674

- what about $P_{25}$ ?


## EXAMPLE

- Symmetry!

$$
P_{25}=-P_{75}
$$

- in general for $X<50$,

$$
P_{X}=-P_{100-x}
$$



## CONVERSION

- suppose you have a normal distribution with a mean of 85 and a standard deviation of 20
- how would you find the 70th percentile?



## z-scores

- Indirect way:
(1) Calculate percentile of $z$-score distribution.
(2) Convert $z$-score back to a raw score.
- from $z$-score we can calculate

$$
X=(s)(z)+\bar{X}
$$

- the online-app shows that for a standard normal, $P_{70}=0.5244$, so

$$
X=(20)(0.5244)+85=95.49
$$

- Or, just change the mean and the standard deviation of the normal distribution in the on-line app


## BUSINESS DECISION

- suppose you are part of a company manufacturing what you think will be the "next big thing" in men's pants



## BUSINESS DECISION

- You want to produce pants that will fit the center of the distribution of men's waist sizes
- There is no need to make pants for men with really small or really large waists because there are so few of such people
- According to the National Health and Nutrition Examination Survey the distribution of waist circumference is approximately normal with (in centimeters)

$$
\mu=101.5
$$

- (around 40 inches)

$$
\sigma=27.6
$$

## BUSINESS DECISION

- What size waists do you manufacture to cover the middle $80 \%$ of the distribution of waist sizes?



## BUSINESS DECISION

- What size waists do you manufacture to cover the middle $80 \%$ of the distribution of waist sizes?


Specify Parameters:
Mean 101.5
SD 27.62675
Area 8
Above
Below

- Between 66.09 and 136.91

Outside

- (Obviously, there are more things to consider: costs, how many sizes, customer preferences,...)


## BUSINESS DECISION

- You plan to set up a canoe business on the Wabash River. You want to purchase canoes that will be able to carry $90 \%$ of 3 -person families. Canoes that carry more weight cost more, so you want canoes that hold the lower $90 \%$ of people (mother, father, child)
- Statistics (pounds)
- Adult women:

$$
\mu=168.5, \sigma=67.7
$$

- Adult men:

$$
\mu=195.7, \sigma=68.0
$$

- Children (18 year old):

$$
\mu=179.4, \sigma=89.7
$$

## BUSINESS DECISION

- For a family we add the means and the variances
- Family:

$$
\begin{gathered}
\mu=168.5+195.7+179.4=543.6 \\
\sigma^{2}=(67.7)^{2}+(68.0)^{2}+(89.7)^{2}=17261 \\
\sigma=131.4
\end{gathered}
$$

## BUSINESS DECISION

- To be able to hold $90 \%$ of families, you need a canoe that holds weight of the 90th percentile


Specify Parameters:
Mean 543.6
SD 131.4
Area . 9

Above

- Below 712.019

Between
Outside

## CONCLUSIONS

- normal distribution
- area under curve
- proportions
- percentiles


## NEXT TIME

- percentile ranks
- examples

A statistical approach to assigning grades.

