PSY 201: Statistics in Psychology Lecture 18 Hypothesis testing of the mean Why I don't use herbal medicines.

Greg Francis

Purdue University

Fall 2019

(4) (5) (4) (5)

SUPPOSE

- we think the mean value of a population of SAT scores is $\mu=455$
- we can take a sample of the population and calculate the sample mean of SAT scores $\overline{X} = 535$
- we can make some statement about how rare it is to get a result like $\overline{X} = 535$ (what we did last time)
- and if such a result is very rare
- we can make a statement about how unreasonable it is that our original thought is true!

HYPOTHESIS TESTING

- in hypothesis testing we consider how reasonable a hypothesis is, given the data that we have
- if the hypothesis is reasonable (consistent with the data), we assume it could be true
- if the hypothesis is unreasonable (inconsistent with the data), we assume it is false
- deciding on what hypotheses to test is critically important!

HYPOTHESIS TESTING

- four steps:
 - State the hypothesis and criterion.
 - 2 Compute the test statistic.
 - Ompute the p value
 - Make a decision.

HYPOTHESIS

- conjecture about one or more population parameters
- e.g.
 - ▶ µ = 455
 - $\mu_1 = \mu_2$
 - *σ* = 3.5
 - ▶ *r* = 0.76
 - **۱**...
- in inferential statistics we always test the **null hypothesis**: H_0

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

NULL HYPOTHESIS

• H_0 is the assumption of no relationship, or no difference. e.g.

- *H*₀: no relationship between variables
- ► *H*₀: no difference between treatment groups
- We want the H_0 to be *specific* so that we can define a sampling distribution
- the alternative hypothesis, H_a is the other possibility. e.g.

•
$$H_0: \mu = 455$$

- *H_a*: µ ≠ 455
- does not say what μ is, but says what it is not!

▲ 国 ▶ | ▲ 国 ▶

NULL HYPOTHESIS

- what's wrong with herbal medicines?
- nothing necessarily, but I don't know that they are any good (and they may be bad)
- lots of reports that they help people (but how can they be sure)
- need to start by assuming that a medicine does nothing, and **prove** that the assumption is false!
- anecdotal reports are just about worthless

NULL HYPOTHESIS

- often times (almost always) the goal of statistical research is to reject the null hypothesis, so that the only alternative is to accept H_a
- similar to an indirect proof. e.g.
 - show that the angles of a triangle sum to 180° by assuming that they do not and then finding a contradiction
- why this approach?
 - ▶ it is much easier to show that something is false (H₀) than to show that something is true (H_a)
- understanding of relationship between variables or differences between groups often requires many experiments!

• • = • • = •

STATE THE HYPOTHESIS

- before doing anything else, we need to make certain that we understand the tested hypothesis
- for the SAT example

$$H_0: \mu = 455$$

 $H_a: \mu \neq 455$

- sometimes this is the most difficult step in designing an experiment
- \bullet to start, we will worry only about hypotheses about the population mean, μ

- The task is almost the same as deciding whether a measurement came from a noise-alone (null hypothesis) distribution or a signal-and-noise (alternative hypothesis) distribution
- How well you can do is determined by the signal-to-nose ratio (d'), but that value is typically unknown
- we set a criterion using only the null hypothesis (noise-alone distribution)

CRITERION

- we will examine the data to see if we should reject H_0
- we will do that by comparing the sample mean, \overline{X} , to the hypothesized value of the population mean, μ
- the bottom-line is whether \overline{X} is sufficiently different from μ to reject H_0
- but we have to consider four things to quantify the term *sufficiently different*
 - standard scores
 - errors in hypothesis testing
 - level of significance
 - region of rejection

STANDARD SCORES

- we previously used standard scores to indicate how much a given scores deviates from a distribution mean
- We do the same kind of thing here, but we want to know how a sample mean, \overline{X} deviates from what the sampling distribution would be if the null hypothesis is true
- We give the standard score a special term:

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$

• We compute everything else using the sampling distribution of this *t* value: the *t* distribution, which is similar to a normal distribution with fatter tails and requires degrees of freedom:

$$df = n-1$$

DECISIONS

- after deciding to reject or not reject H_0 there are four possible situations
 - A true null hypothesis is rejected. (False alarm)
 - ▶ ** A true null hypothesis is not rejected. (Correct rejection)
 - A false null hypothesis is not rejected. (Miss)
 - ** A false null hypothesis is rejected. (Hit)
- errors are unavoidable
- we want to minimize the probability of making errors, given the particular data set we have

A B A A B A

ERRORS

• two types of errors:

- **Type I error**: when we reject a true null hypothesis (false alarm).
- **Type II error**: when we do not reject a false null hypothesis (miss).

	State of nature	
Decision made	<i>H</i> ₀ true	H_0 false
Reject H ₀	Type I error	Correct decision
Do not reject H_0	Correct decision	Type II error

• generally, decreasing the probability of making one type of error increases the probability of making the other type of error

• • = • • = •

ERRORS

- suppose you have a new, untested, and expensive treatment for cancer
- you run a test to judge whether the drug is better than existing drugs
- if you reject H_0 , indicating that the drug **is** more effective, when in fact it is not, people will spend a lot of money for no reason (Type I error)
- if you fail to reject H_0 , indicating that the drug is not effective, when in fact it is, people will not use the drug (Type II error)
- scientific research tends to focus on avoiding Type I errors

A B A A B A

SIGNIFICANCE LEVEL

- alpha (α) level
- indicates probability of Type I error
- frequently we choose $\alpha = 0.05$ or $\alpha = 0.01$
- that is, the corresponding decision to reject H₀ may produce a Type I error 5% or 1% of the time
- a statement about how much error we will accept
- usually chosen before the data is gathered depends upon use of the analysis

- α is a probability
- it identifies how much risk of Type I error we are willing to take (rejecting H₀ when it is true)
- consider our example of SAT scores

$$H_0: \mu = 455$$

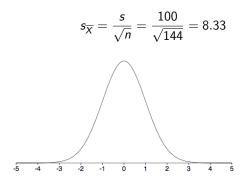
• suppose we also know the sample standard deviation

$$s = 100$$

• and our sample size is n = 144

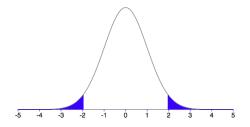
• we know that the sampling distribution of t is:

- A *t* distribution with df = n 1 = 143.
- Has a mean of $\mu = 0$, if H_0 is true
- Has a standard error of the mean

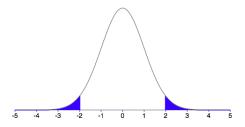


< ∃ > < ∃

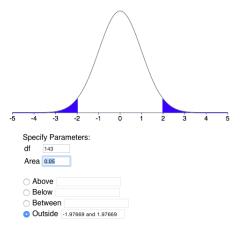
- area under the curve represents the probability of getting the corresponding *t* values, if the *H*₀ is true
- the extreme tails of the sampling distribution correspond to what should be very rare *t* values, and thus very rare sample means



- $\bullet\,$ we shade in the extreme $\alpha\,$ percentage of the sampling distribution
- called the region of rejection
- if our data produces a *t* value in the region of rejection, we reject *H*₀ because it is unlikely that we would get such a value if the *H*₀ were true.



- values of sample means at the beginning of the region of rejection
- NOTE: α is split up in each tail
- called a two-tailed or non-directional test



TEST STATISTIC

- if the *t*-score is beyond ± 1.977 , it is very unlikely to have occurred if the H_0 is true.
- we have the following data:
 - ▶ µ = 455, H₀
 - n = 144, sample size
 - $\overline{X} = 535$, observed value for sample statistic
 - s = 100, value of the standard deviation of the population
 - $s_{\overline{X}} = 8.33$, standard error (calculated earlier)
- from this we can calculate the *t*-score

A B A A B A

TEST STATISTIC

• we want to know how different \overline{X} is from the hypothesized μ in terms of standard error units

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$
$$t = \frac{535 - 455}{8.33} = 9.60$$

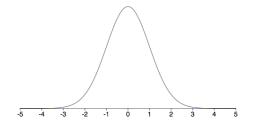
• the standard score is the **test statistic** for testing *H*₀ about a population mean

DECIDING ABOUT H₀

compare the test statistic to the critical value

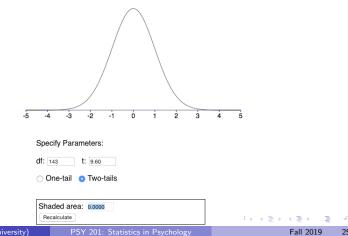
$$t = 9.60 > 1.977 = t_{cv}$$

• indicates that the sample mean \overline{X} is extremely rare, given the assumed population mean μ , by chance (random sampling)



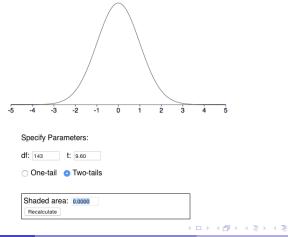
p-VALUE

- another way to do it (advocated by your text) is to use the *t*-value to compute the probability of getting a *t*-value more extreme than what you found
- p-value
- t distribution calculator



p-VALUE

- We find $p \approx 0$
- Since the probability is small (< .05), then we conclude that the H_0 is probably not true



Greg Francis (Purdue University)

DECISIONS

• since the p value is smaller than the α we set, we reject

$$H_0: \mu = 455$$

• in favor of the alternative hypothesis

 H_a : $\mu \neq 455$

• but there is still a chance that H_0 is true!

• 3 >

CONCLUSIONS

- null hypothesis
- rejecting H_0
- Type I error
- Type II error

・ 何 ト ・ ヨ ト ・ ヨ ト

NEXT TIME

- Test statistic
- Deciding about H_0

Why clinical studies use thousands of subjects.

< 3 >