PSY 201: Statistics in Psychology Lecture 19 Hypothesis testing of the mean Why clinical studies use thousands of subjects.

Greg Francis

Purdue University

Fall 2019

(3)

SUPPOSE

- we think the mean value of a population of SAT scores is $\mu=455$
- we can take a sample of n = 144 from the population and calculate the sample mean of SAT scores $\overline{X} = 535$ with sample standard deviation s = 100

HYPOTHESIS TESTING

four steps

- State the hypothesis and criterion.
- 2 Compute the test statistic.
- Ompute the p value
- Make a decision.

4 3 > 4 3

RECAP OF LAST TIME

• (1) State the hypotheses and set the criterion

 $H_0: \mu = 455$ $H_a: \mu \neq 455$

• $\alpha = 0.05$

(4) (日本)

RECAP OF LAST TIME

• (2) Compute the test statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$
$$t = \frac{535 - 455}{8.33} = 9.60$$

• (3) Compute the *p*-value (using the *t*-distribution calculator with df = n - 1):

 $p \approx 0$

- (4) Make a decision: $p < \alpha$, so reject H_0
 - the found sample mean would be a very rare event if H_0 were true

• • = • • = •

DIFFERENT MEAN

 suppose we had the same situation as before, but we had instead found

$$\overline{X} = 465$$

• (1) State the hypotheses and set the criterion (unchanged!)

$$H_0: \mu = 455$$

 $H_a: \mu \neq 455$

- α = 0.05
- (2) Compute the test statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$
$$t = \frac{465 - 455}{8.33} = 1.20$$

DIFFERENT MEAN

• (3) Compute the *p*-value (using the *t*-distribution calculator with df = n - 1):

$$p = 0.2301$$

- (4) Make a decision: $p > \alpha$, so do **not** reject H_0
- the found sample mean would not be very rare if H_0 were true
 - ▶ if the null hypothesis is true, then the probability that $|\overline{X}| \ge 465$ would be found by random sampling is greater than .05

・ 同 ト ・ ヨ ト ・ ヨ ト

SAMPLE SIZE

 suppose we had the same situation as before, but we had instead found

$$\overline{X} = 465$$

- with a sample size of n = 500
- (1) State the hypotheses and set the criterion

$$H_0: \mu = 455$$

 $H_a: \mu \neq 455$

α = 0.05

SAMPLE SIZE

• (2) Compute the test statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$

• we need to recompute $s_{\overline{X}}$

$$s_{\overline{X}} = \frac{s}{\sqrt{n}} = \frac{100}{\sqrt{500}} = 4.47$$
$$t = \frac{465 - 455}{4.47} = 2.24$$

(4) (5) (4) (5)

SAMPLE SIZE

• (3) Compute the *p*-value (using the *t*-distribution calculator with df = n - 1 = 499):

p = 0.0251

- (4) Make a decision: $p < \alpha$, so do reject H_0
 - ▶ the found sample mean would be a rare event if H_0 were true. The probability that $|\overline{X}| \ge 465$ would be found by random sampling is less than .05

< 同 ト < 三 ト < 三 ト

CALCULATOR

 you need to understand the math and calculations, but generally you should not **do** it

Sample size $n = 500$	
Sample mean $\overline{X} = _{465}$	
Sample standard deviation $s = 100$	
Specify hypotheses:	
$H_0: \mu = 455$	
Ha: Two-tails	
$\alpha = 0.05$	
Run Test	
Test summary	
Null hypothesis $H_0: \mu = 455$	
Alternative hypothesis $H_a: \mu \neq 455$	
Type I error rate $\alpha = 0.05$	
Sample size $n = 500$	
Sample mean $\overline{X} = 465.0000$	
Sample standard deviation $s = 100.000000$	
Sample standard error $s_{\overline{x}} = 4.472136$	
Test statistic $t = 2.236068$	
Degrees of freedom $df = 499$	
p value $p = 0.025789$	
Decision Reject the null hypothesis	
Confidence interval critical value $t_{cv} = 1.964729$	
Confidence interval CI ₉₅ =(456.213463, 473.786537)	

CLINICAL TRIALS

- often hear about medical studies that track thousands of patients
- why do they need so many people?
- a larger sample makes for less variation in the sampling distribution of the mean

$$s_{\overline{X}} = \frac{s}{\sqrt{n}}$$

- thus, if the null hypothesis really is false, you are more likely to reject it with a larger sample
- if the null hypothesis is really true, you are not more likely to reject it (no extra mistakes with a larger sample size!)

COMMENTS

several things are worth noting

- The α probability is about the *process* of making decisions. It controls Type I error rates, but for any given decision you do not know if you made an error or not.
- Even when we reject H_0 , there is always a chance that it is true.
- Even when we do not reject H_0 , there is always a chance that it is false.
- The statement p < 0.05 is about the **statistic** given the hypothesis, not about the hypothesis. We never conclude that H_0 is false with probability 0.95.
- Technically, we have done all of this before.
- These techniques are quantifiable.
- No inclusion of knowledge about the direction of difference.

• • = • • = •

DIRECTIONAL HYPOTHESIS

- $\bullet\,$ we choose a significance level, $\alpha\,$
- indicates probability of Type I error
- earlier, we split this error across the two tails of the sampling distribution

DIRECTIONAL HYPOTHESIS

- suppose we know (or strongly suspect) that if the sample mean \overline{X} is different from the population mean μ , it will be greater
- then we don't need to worry about the left-side tail

 $H_0: \mu = 455$

 $H_a: \mu > 455$

REGION OF REJECTION

- if we only have to worry about one tail, the region of rejection (in that tail) is larger!
- with df = 143, last 5% starts with a *t*-score of 1.656
- we can reject H_0 when the difference between \overline{X} and μ is smaller!

EXAMPLE

• we know that the sampling distribution of t is:

- A *t* distribution with df = 143.
- Has a mean of $\mu = 0$.
- Has a standard error of the mean

(3)

REGION OF REJECTION

- area under the curve represents the probability of getting the corresponding *t* values, given that *H*₀ is true
- the extreme right tail of the sampling distribution corresponds to what should be very rare *t* values
- critical *t*-score value is 1.656

TEST STATISTICS

• we compute test statistic

$$t = \frac{\overline{X} - \mu}{s_{\overline{X}}}$$
$$t = \frac{535 - 455}{8.33} = 9.60$$

• greater than critical value

- reject H_0
- The same decision is found by computing the *p*-value

$$p \approx 0 < \alpha = 0.05$$

EXAMPLE

• suppose everything was the same, except we had hypotheses:

$$H_0: \mu = 455$$

 $H_a: \mu < 455$

• then we would shift the region of rejection to the left tail

EXAMPLE

- the critical *t*-score value becomes -1.656
- with our sample mean of $\overline{X} = 535$, and z = 9.60,
- we cannot reject H_0

< 3 >

CALCULATOR

• you need to understand the math and calculations, but generally you should not **do** it

Enter data:		
Sample size $n = 144$		
Sample mean $\overline{X} = 535$		
Sample standard deviation $s =$	100	
Specify hypotheses:		
$H_0: \mu = 455$		
Ha: Negative one-tail ᅌ		
$\alpha = 0.05$		
Run Test		
Test	summary	
Null hypothesis	$H_0: \mu = 455$	
Alternative hypothesis	$H_a: \mu < 455$	
Type I error rate	$\alpha = 0.05$	
Sample size	n =144	
Sample mean	$\overline{X} = 535.0000$	
Sample standard deviation	s =100.000000	
Sample standard error	$s_{\overline{x}} = 8.333333$	
Test statistic	t =9.600000	
Degrees of freedom	df = 143	
p value	p = 1.000000	
Decision	Do not the reject null hypothesis	
Confidence interval critical va	lue $t_{cv} = 1.976692$	
Confidence interval	CI ₉₅ =(518.527565, 551.472435)	

Greg Francis (Purdue University)

PSY 201: Statistics in Psychology

Fall 2019 22 / 24

CONCLUSIONS

- hypothesis testing
- sample size
- directional test

▲ □ ▶ ▲ □ ▶ ▲ □

NEXT TIME

- Designing experiments
- Power
- Selecting sample size

Plan ahead!

▲ □ ▶ ▲ □ ▶ ▲ □