PSY 201: Statistics in Psychology

Lecture 26
Hypothesis testing for two means
Planning a replication study.

Greg Francis

Purdue University

Fall 2019

TESTING MEANS

we want to test

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_a: \mu_1 - \mu_2 \neq 0$

- ullet but the techniques of last time require $\sigma_1^2=\sigma_2^2$
- pooled estimate of variance

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

$$s_{\overline{X}_1-\overline{X}_2} = \sqrt{s^2\left(rac{1}{n_1}+rac{1}{n_2}
ight)}$$

and use the t-distribution

REVISED TESTING MEANS

when

$$\sigma_1^2 \neq \sigma_2^2$$

- we must make two changes
 - ▶ different estimate of standard error of the difference $s_{\overline{X}_1 \overline{X}_2}$
 - adjustment of degrees of freedom
- still use the t distribution

$$s_{\overline{X}_1 - \overline{X}_2} = \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}$$

or

$$s_{\overline{X}_1-\overline{X}_2} = \sqrt{s_{\overline{X}_1}^2 + s_{\overline{X}_2}^2}$$

DEGREES OF FREEDOM

• when $\sigma_1^2 \neq \sigma_2^2$ we calculate df as:

$$df = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\left(s_1^2/n_1\right)^2/\left(n_1 - 1\right) + \left(s_2^2/n_2\right)^2/\left(n_2 - 1\right)}$$

or

$$df = \frac{\left(s_{\overline{X}_1}^2 + s_{\overline{X}_2}^2\right)^2}{\left(s_{\overline{X}_1}^2\right)^2/(n_1 - 1) + \left(s_{\overline{X}_2}^2\right)^2/(n_2 - 1)}$$

- looks (and is) messy
- just a matter of plugging in numbers carefully
- still use the t-test as before!
- We call it Welch's test

EXAMPLE

- A researcher wants to know if single or married parents are more satisfied with their status. She randomly samples 61 single and 161 married parents. Each parent rates her/his marital status satisfaction, with higher scores indicating greater satisfaction. The researcher wants to know if there is a difference between the population means of single versus married parents.
- data summary

Variable	n	\overline{X}	S	$s_{\overline{X}}$
Group 1	61	2.6557	0.602	0.077
Group 2	161	2.7516	0.461	0.036

HYPOTHESES

$$H_0: \mu_1 - \mu_2 = 0$$

indicating there is no difference in satisfaction between the two groups

$$H_a: \mu_1 - \mu_2 \neq 0$$

- indicating there is a difference in satisfaction between the two groups
- not an ordered hypothesis because we do not know who might be more satisfied
- level of significance is set at $\alpha = 0.05$

WORRY ABOUT HOMOGENEITY

- We do not know the true values of σ_1 and σ_2 , but we notice that $n_1 < n_2$ and that $s_1 > s_2$.
- This makes us worry that maybe our Type I error rate will be off (and maybe too big), so we use Welch's t-test
- The online calculator in the textbook uses Welch's test unless $n_1 = n_2$

TEST STATISTIC

• pooled standard error estimate

$$s_{\overline{X}_1 - \overline{X}_2} = \sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}$$

$$s_{\overline{X}_1 - \overline{X}_2} = \sqrt{\left(\frac{(0.602)^2}{61} + \frac{(0.461)^2}{161}\right)}$$

$$s_{\overline{X}_1 - \overline{X}_2} = 0.075683$$

TEST STATISTIC

the formula for the test statistic is

$$Test \ statistic = \frac{Statistic - Parameter}{Standard \ Error}$$

or

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{s_{\overline{X}_1 - \overline{X}_2}}$$

or

$$t = \frac{(2.6557 - 2.75162) - (0)}{0.075683} = -1.267$$

TEST STATISTIC

adjusted degrees of freedom

$$df = \frac{\left(s_{\overline{X}_1}^2 + s_{\overline{X}_2}^2\right)^2}{\left(s_{\overline{X}_1}^2\right)^2 / (n_1 - 1) + \left(s_{\overline{X}_2}^2\right)^2 / (n_2 - 1)}$$

$$df = \frac{\left((0.077)^2 + (0.036)^2\right)^2}{\left((0.077)^2\right)^2 / (61 - 1) + \left((0.036)^2\right)^2 / (161 - 1)}$$

$$df = 87.995$$

p VALUE

• From the t-distribution calculator, we find (for a two-tailed test with df = 87.995) that

$$p = 0.208455 > \alpha = 0.05$$

- we do not reject H_0
 - there is no evidence that satisfaction with marital status differs for married versus single parents
 - the probability that the observed (or more extreme) difference in means would occur by chance if $\mu_1 \mu_2 = 0$ is greater than 0.05

ONLINE CALCULATOR

 As always, it is best to use a computer. We can enter the summary statistics.

Enter data:			
Sample size for group 1 $n_1 = 61$			
Sample mean for group 1 $\overline{X}_1 = 2.6557$			
Sample standard deviation for group 1 $s_1 = 0.602$			
Sample size for group 2 $n_2 = 161$			
Sample mean for group 2 $\overline{X}_2 = 2.7516$			
Sample standard deviation for group 2 $s_2 = 0.461$			
Specify hypotheses:			
$H_0: \mu_1 - \mu_2 = 0$			
H_a : Two-tails \div			
$\alpha = 0.05$			
Run Test			

ONLINE CALCULATOR

• You need to understand how to pull out the information you want

Test summary			
Type of test	Welch's Test		
Null hypothesis	$H_0: \mu_1 - \mu_2 = 0$		
Alternative hypothesis	$H_a: \mu_1 - \mu_2 \neq 0$		
Type I error rate	$\alpha = 0.05$		
Label for group 1	Group 1		
Sample size 1	$n_1 = 61$		
Sample mean 1	$\overline{X}_1 = 2.6557$		
Sample standard deviation 1	$s_1 = 0.602000$		
Label for group 2	Group 2		
Sample size 2	$n_2 = 161$		
Sample mean 2	$\overline{X}_2 = 2.7516$		
Sample standard deviation 2	$s_2 = 0.461000$		
Pooled standard deviation	s = NA		
Sample standard error	$s_{\overline{X}_1 - \overline{X}_2} = 0.075683$		
Test statistic	t = -1.267121		
Degrees of freedom	df = 87.99504946388605		
p value	p = 0.208455		
Decision	Do not the reject null hypothesis		
Confidence interval critical value $t_{CV} = 1.987291$			
Confidence interval	CI ₀₅ =(-0.246305, 0.054505)		

CONFIDENCE INTERVAL

Basic formula for all confidence intervals:

$$CI = \text{statistic} \pm (\text{critical value})(\text{standard error})$$

for a difference of sample means

$$CI = (\overline{X}_1 - \overline{X}_2) \pm t_{cv} s_{\overline{X}_1 - \overline{X}_2}$$

• We already have most of the terms (we get t_{cv} from the Inverse t-distribution calculator, so

$$extit{Cl}_{95} = (2.6557 - 2.7516) \pm (1.987291)(0.075683)$$

$$extit{Cl}_{95} = (-0.246305, 0.054505)$$

POWER

- Power is treated much the same as for the one-sample case
- We just have to keep track of whether we are using the standard t-test or Welch's test
- The on-line calculator of our textbook does this for you automatically
- Power is very important when designing an experiment

- An important characteristic of science is replication
- Show that the same methods and measures produce the same results
- "Hard" sciences are very good at this (e.g., physics, chemistry)
- Sciences that depend on statistics face challenges
- We always face a risk of making a Type I or a Type II error
- Thus, successful replication is not expected even for real effects
- You can mitigate these problems by designing good replication studies that use the same methods, but have high power

INTERESTING STUDY

- Consider a study on how nonconformity can induce higher status in certain environments
- Participants were 52 shop assistants working in downtown Milan, Italy boutiques (Armani, Burberry, Christian Dior, La Perla, Les Copains, and Valentino)
- Two groups of 26 each read a vignette:
- Imagine that a woman is entering a luxury boutique in downtown Milan during summer. She looks approximately 35 years old.
- Nonconforming condition (Group 1): She is wearing plastic flip-flops and she has a Swatch on her wrist.
- Conforming condition (Group 2): She is wearing sandals with heels and she has a Rolex on her wrist.
- Rate the status of the woman on a scale of 1–7 (bigger means higher status)

INTERESTING STUDY

- The results are:
- Nonconforming

$$\overline{X}_1 = 4.8$$

Conforming

$$\overline{X}_2 = 4.2$$

$$t(50) = 2.1$$

$$p = 0.0408$$

- You want to repeat the study, but it is not easy to get shop assistants from high end stores (you might have to go to Chicago for your subjects)
- The online power calculator requires you to enter estimates of:

$$H_0: \mu_1 - \mu_2 = 0$$
 $H_0: \mu_{a1} - \mu_{a2} pprox \overline{X}_1 - \overline{X}_2 = 0.6$ σ_1, σ_2

 for the standard deviations, we use some algebra. We know that for the reported t-test:

$$2.1 = t = \frac{\overline{X}_1 - \overline{X}_2}{s_{\overline{X}_1 - \overline{X}_2}} = \frac{0.6}{s_{\overline{X}_1 - \overline{X}_2}}$$

SO

$$s_{\overline{X}_1 - \overline{X}_2} = \frac{0.6}{2.1} = 0.28571$$

• We can assume the standard *t*-test was used, so $\sigma_1 = \sigma_2$. Thus

$$s_{\overline{X}_1 - \overline{X}_2} = s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = s\sqrt{\frac{1}{26} + \frac{1}{26}} = s(0.27735)$$

SO

$$s = \frac{0.28571}{0.27735} = 1.030157$$

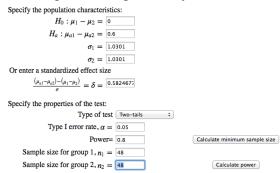
• which we can use for both σ_1 and σ_2

- Oftentimes researchers just use the same sample size as a previous study. After all, that study worked, so it must be an appropriate sample size, right?
- No, if we use $n_1 = n_2 = 26$, the on-line power calculator gives power=0.5397



- this should make sense because the p=0.04 in the original study is just below the $\alpha=0.05$ criterion
- ullet if we take a different random sample, we will get a different p value, almost half the time it will be bigger than lpha

- Suppose you want 80% power
- The calculator tells you that you need $n_1 = n_2 = 48$ participants. Nearly twice as big as the original study!



- if you do the replication correctly, you typically run a *better* study than the original
- That is common in science, where new experiments are better than old experiments

EFFECT SIZE

- The power calculator computes a term called δ . This is an estimate of d' between the null and specific alternative distributions. Bigger values of δ mean it is easier to notice a difference. It can be computed from the means and standard deviation estimates that you provide to the power calculator.
- An estimate, d, can also be computed from the t value and sample sizes

$$d = t\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = (2.1)\sqrt{\frac{1}{26} + \frac{1}{26}} = 0.5824$$

Often called Cohen's d

EFFECT SIZE

- You might worry that the effect size of the original study is an overestimate
- After all, if the researchers had not found a significant difference, they might not have published their paper (publication bias)
- A conservative approach is to divide the estimated effect size half, and do the power calculation from that new effect size.
- Thus, we can directly enter:

$$\delta = \frac{d}{2} = \frac{0.5824}{2} = 0.2912$$

- The power calculator now tells us that to have 80% power, we need $n_1 = n_2 = 187$ subjects
- This could be a very difficult experiment to run

CONCLUSIONS

- Welch's test
- Power
- Replication

NEXT TIME

- hypothesis testing for dependent samples
- sampling distribution
- standard error

Within is better than between.