#### PSY 201: Statistics in Psychology Lecture 33 Analysis of Variance Some thing versus which thing.

#### Greg Francis

Purdue University

Fall 2019

A B A A B A

# ANOVA

Test statistic:

$$F = \frac{MS_B}{MS_W}$$

 $F = \frac{\text{Estimated variability from noise and mean differences}}{\text{Estimated variability from noise}}$ 

- if  $H_0$  is true, and F is sufficiently larger than 1, then a rare event has happened. Since rare events are rare, when F >> 1 we suppose that  $H_0$  is not true
- Rareness is established by the p value, which is gotten from an F distribution with  $K 1 \ df$  in the numerator and  $N K \ df$  in the denominator

A B A A B A

## **HYPOTHESES**

• The null is an *omnibus* hypothesis. It supposes no difference between any population means

$$H_0: \mu_i = \mu_j \forall i, j$$

• the alternative is the complement

 $H_0: \mu_i \neq \mu_j$  form some i, j

• Note, there is no one-tailed version of ANOVA

# INTERPRETING

• I happen to have data from 8 different classes that all completed an experiment where subjects responded as quickly as possible whether a set of letters formed a word or not

| Source  | df  | SS            | MS          | F      | p-value |
|---------|-----|---------------|-------------|--------|---------|
| Between | 7   | 2324584.6485  | 332083.5212 | 6.6500 | 0.00000 |
| Within  | 407 | 20324589.8142 | 49937.5671  |        |         |
| Total   | 414 | 22649174.4627 |             |        |         |

| Condition      | Mean               | Standard deviation | Sample size |
|----------------|--------------------|--------------------|-------------|
| Francis200F15  | 788.3333333333333  | 244.2585052255086  | 81          |
| Francis200S16  | 756.0007352941174  | 204.17983832898088 | 68          |
| Francis200F16  | 750.0464601769914  | 218.19667178177372 | 113         |
| Francis200F17  | 756.6531914893621  | 214.33283856802967 | 94          |
| FUSfall2018    | 766.1649999999998  | 172.00442964925605 | 30          |
| Psy200Spring15 | 1167.3535714285715 | 360.9423454196428  | 14          |
| FS16PSY200     | 776.26             | 224.8173218909571  | 10          |
| PSY2008HKIED   | 849.6600000000002  | 191.92566073873397 | 5           |

- The conclusion is that *at least one* population mean seems to be different from the other population means. **Something** is different
- The ANOVA does not tell you **which** mean is different from the others; or if more than one mean is different from others.

# INTERPRETING

- It might be tempting to just look at the data and "wing it"
- For example, looking at the means, it seems that class *Psy200Spring15* has a much larger mean than any other class

| Source  | df  | SS            | MS          | F      | p-value |
|---------|-----|---------------|-------------|--------|---------|
| Between | 7   | 2324584.6485  | 332083.5212 | 6.6500 | 0.00000 |
| Within  | 407 | 20324589.8142 | 49937.5671  |        |         |
| Total   | 414 | 22649174.4627 |             |        |         |

| Condition      | Mean               | Standard deviation | Sample size |
|----------------|--------------------|--------------------|-------------|
| Francis200F15  | 788.3333333333333  | 244.2585052255086  | 81          |
| Francis200S16  | 756.0007352941174  | 204.17983832898088 | 68          |
| Francis200F16  | 750.0464601769914  | 218.19667178177372 | 113         |
| Francis200F17  | 756.6531914893621  | 214.33283856802967 | 94          |
| FUSfall2018    | 766.1649999999998  | 172.00442964925605 | 30          |
| Psy200Spring15 | 1167.3535714285715 | 360.9423454196428  | 14          |
| FS16PSY200     | 776.26             | 224.8173218909571  | 10          |
| PSY2008HKIED   | 849.660000000002   | 191.92566073873397 | 5           |

• But that class also has a small number of students (n = 14), and a large standard deviation (s = 360.9), so we would expect quite a bit of variability in the mean value. Maybe this big mean is not so rare, given the variability due to random sampling

・ロト ・ 同ト ・ ヨト ・ ヨト

# INTERPRETING

- More than one mean might differ from other means
- Even if the mean for *Psy200Spring15* is different from the others, might other means also be different?

| Source  | df  | SS            | MS          | F      | p-value |
|---------|-----|---------------|-------------|--------|---------|
| Between | 7   | 2324584.6485  | 332083.5212 | 6.6500 | 0.00000 |
| Within  | 407 | 20324589.8142 | 49937.5671  |        |         |
| Total   | 414 | 22649174.4627 |             |        |         |

| Condition      | Mean               | Standard deviation | Sample size |
|----------------|--------------------|--------------------|-------------|
| Francis200F15  | 788.3333333333333  | 244.2585052255086  | 81          |
| Francis200S16  | 756.0007352941174  | 204.17983832898088 | 68          |
| Francis200F16  | 750.0464601769914  | 218.19667178177372 | 113         |
| Francis200F17  | 756.6531914893621  | 214.33283856802967 | 94          |
| FUSfall2018    | 766.1649999999998  | 172.00442964925605 | 30          |
| Psy200Spring15 | 1167.3535714285715 | 360.9423454196428  | 14          |
| FS16PSY200     | 776.26             | 224.8173218909571  | 10          |
| PSY2008HKIED   | 849.660000000002   | 191.92566073873397 | 5           |

• We would really like to know which means seem to be different from which other means

< 注入 < 注入

# TYPE I ERROR

- Multiple testing problem
- To motivate ANOVA, we mentioned that it is problematic to just test all pairwise comparisons of group means. With 8 means, there would be 28 tests. So the Type I error rate would be around

$$1 - (1 - \alpha)^{28} = (1 - 0.95^{28}) = 0.76$$

• Instead of just testing all possible comparisons, suppose we first require that the ANOVA produces a significant result. If  $H_0$  is true, the ANOVA should only conclude that some difference exists with a probability of 0.05 (or whatever you choose as  $\alpha$ )

# TYPE I ERROR

- Thus, we can control the overall Type I error rate by insisting that our data produce a significant ANOVA *before* we start testing different means
- We want to check that something is different before we check which means are different!
- If we test *Psy200Spring15* against each of the other seven means, the Type I error rate can be no bigger than what it was for the ANOVA
- In fact, it has to be a bit smaller than the  $\alpha$  used for the ANOVA because we have to satisfy two criteria
- If  $H_0$  is true, 95% of the time, we never compare the means to each other

A B A A B A

#### t tests

- One approach is to just run *t* tests (Welch's test) to compare different means
- For example, we can test Psy200Spring15 against Francis200F15

| Test summary                      |                                                   |  |  |  |  |
|-----------------------------------|---------------------------------------------------|--|--|--|--|
| Type of test                      | Welch's Test                                      |  |  |  |  |
| Null hypothesis                   | $H_0: \mu_1 - \mu_2 = 0$                          |  |  |  |  |
| Alternative hypothesis            | $H_a: \mu_1 - \mu_2 \neq 0$                       |  |  |  |  |
| Type I error rate                 | $\alpha = 0.05$                                   |  |  |  |  |
| Label for group 1                 | Group 1                                           |  |  |  |  |
| Sample size 1                     | $n_1 = 14$                                        |  |  |  |  |
| Sample mean 1                     | $\overline{X}_1 = 1167.3536$                      |  |  |  |  |
| Sample standard deviation 1       | $s_1 = 360.942345$                                |  |  |  |  |
| Label for group 2                 | Group 2                                           |  |  |  |  |
| Sample size 2                     | $n_2 = 81$                                        |  |  |  |  |
| Sample mean 2                     | $\overline{X}_2 = 788.3333$                       |  |  |  |  |
| Sample standard deviation 2       | $s_2 = 244.258505$                                |  |  |  |  |
| Pooled standard deviation         | s = NA                                            |  |  |  |  |
| Sample standard error             | $s_{\overline{X}_1 - \overline{X}_2} = 76.322416$ |  |  |  |  |
| Test statistic                    | t = 4.966041                                      |  |  |  |  |
| Degrees of freedom                | df =15.124024621983446                            |  |  |  |  |
| p value                           | p =0.000165                                       |  |  |  |  |
| Decision                          | Reject the null hypothesis                        |  |  |  |  |
| Confidence interval critical valu | $t_{cv} = 2.129928$                               |  |  |  |  |
| Confidence interval               | CI <sub>95</sub> =(216.458972, 541.581502)        |  |  |  |  |

글 🕨 🖌 글

#### t tests

- One approach is to just run *t* tests (Welch's test) to compare different means
- For example, we can test Psy200Spring15 against PSY2008HKIED

|                                    | 1 0 0                                              |  |  |  |  |
|------------------------------------|----------------------------------------------------|--|--|--|--|
| Test summary                       |                                                    |  |  |  |  |
| Type of test                       | Welch's Test                                       |  |  |  |  |
| Null hypothesis                    | $H_0: \mu_1 - \mu_2 = 0$                           |  |  |  |  |
| Alternative hypothesis             | $H_a: \mu_1 - \mu_2 \neq 0$                        |  |  |  |  |
| Type I error rate                  | $\alpha = 0.05$                                    |  |  |  |  |
| Label for group 1                  | Group 1                                            |  |  |  |  |
| Sample size 1                      | $n_1 = 14$                                         |  |  |  |  |
| Sample mean 1                      | $\overline{X}_1 = 1167.3536$                       |  |  |  |  |
| Sample standard deviation 1        | $s_1 = 360.942345$                                 |  |  |  |  |
| Label for group 2                  | Group 2                                            |  |  |  |  |
| Sample size 2                      | $n_2 = 5$                                          |  |  |  |  |
| Sample mean 2                      | $\overline{X}_2 = 849.6600$                        |  |  |  |  |
| Sample standard deviation 2        | $s_2 = 191.925607$                                 |  |  |  |  |
| Pooled standard deviation          | s = NA                                             |  |  |  |  |
| Sample standard error              | $s_{\overline{X}_1 - \overline{X}_2} = 171.445901$ |  |  |  |  |
| Test statistic                     | t =1.853025                                        |  |  |  |  |
| Degrees of freedom                 | <i>df</i> =13.741233049477954                      |  |  |  |  |
| p value                            | p = 0.085474                                       |  |  |  |  |
| Decision                           | Do not the reject null hypothesis                  |  |  |  |  |
| Confidence interval critical value | $t_{cv} = 2.148582$                                |  |  |  |  |
| Confidence interval                | $\text{CI}_{95}{=}(\text{-}50.672018, 686.059158)$ |  |  |  |  |
|                                    |                                                    |  |  |  |  |

< ∃ ▶

# CONTRASTS

- There is a better (and more general approach)
- ANOVA assumes/requires homogeneity of variance

$$\sigma_i^2 = \sigma_j^2 \ \forall \ i, j$$

- For the *t*-test we pooled variances/standard deviations to get a better estimate of  $\sigma$
- With more populations, we can pool all of the sample variances and thereby get a still better estimate
- Thus, even when we compare Psy200Spring15 against Francis200F15, we can use the data from the other samples to get a better estimate of  $\sigma$

# POOLED ESTIMATE

- Fortunately, the pooled estimate of variance is easy to find
- We computed it in the ANOVA, it is  $MS_W$

| Source  | df  | SS            | MS          | F      | p-value |
|---------|-----|---------------|-------------|--------|---------|
| Between | 7   | 2324584.6485  | 332083.5212 | 6.6500 | 0.00000 |
| Within  | 407 | 20324589.8142 | 49937.5671  |        |         |
| Total   | 414 | 22649174.4627 |             |        |         |

| Condition      | Mean               | Standard deviation | Sample size |
|----------------|--------------------|--------------------|-------------|
| Francis200F15  | 788.3333333333333  | 244.2585052255086  | 81          |
| Francis200S16  | 756.0007352941174  | 204.17983832898088 | 68          |
| Francis200F16  | 750.0464601769914  | 218.19667178177372 | 113         |
| Francis200F17  | 756.6531914893621  | 214.33283856802967 | 94          |
| FUSfall2018    | 766.1649999999998  | 172.00442964925605 | 30          |
| Psy200Spring15 | 1167.3535714285715 | 360.9423454196428  | 14          |
| FS16PSY200     | 776.26             | 224.8173218909571  | 10          |
| PSY2008HKIED   | 849.660000000002   | 191.92566073873397 | 5           |

• Thus, the standard error that we use for the t test is

$$s_{\overline{X}_1-\overline{X}_2} = \sqrt{MS_W\left(rac{1}{n_1}+rac{1}{n_2}
ight)}$$

Image: A image: A

## CONTRASTS

• For example, we can test *Psy200Spring15* against *Francis200F15* 

$$S_{\overline{X}_1-\overline{X}_2} = \sqrt{MS_W\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \sqrt{(49937.5671)\left(\frac{1}{14} + \frac{1}{81}\right)} = 64.67984425$$

• Compare to the traditional t test, where

$$s_{\overline{X}_1-\overline{X}_2} = 76.322416$$

So with the pooled variance, we get

$$t = \frac{\overline{X}_1 - \overline{X}_2}{s_{\overline{X}_1 - \overline{X}_2}} = \frac{379.02}{76.322} = 5.8599$$

- Compare to t = 4.966 for the traditional t test
- The degrees of freedom is based on how many scores contribute to the variance calculation, so we get

$$df = N - K = 415 - 8 = 407$$

• compare to  $df = n_1 + n_2 - 2 = 14 + 81 - 2 = 93$ , for traditional t test (smaller with Welch's test)

Greg Francis (Purdue University)

#### CONTRASTS

• For example, we can test Psy200Spring15 against PSY2008HKIED

$$s_{\overline{X}_1-\overline{X}_2} = \sqrt{MS_W\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \sqrt{(49937.5671)\left(\frac{1}{14} + \frac{1}{5}\right)} = 116.423$$

Compare to the traditional t test, where

$$s_{\overline{X}_1-\overline{X}_2} = 171.446$$

So with the pooled variance, we get

$$t = \frac{\overline{X}_1 - \overline{X}_2}{s_{\overline{X}_1 - \overline{X}_2}} = \frac{317.69}{171.446} = 2.7288$$

• The degrees of freedom is based on how many scores contribute to the variance calculation, so we get

$$df = N - K = 415 - 8 = 407$$

• so *p* = 0.0066

- Compare to t = 1.853 for the traditional t test
- compare to  $df = n_1 + n_2 2 = 14 + 5 2 = 17$ , and p = 0.08 = 0.08Greg Francis (Purdue University) PSY 201: Statistics in Psychology Fall 2019 14/26

### BETTER IS BETTER

- With a contrast, we get a better estimate of s<sub>X1-X2</sub>, which sometimes means we can reject H<sub>0</sub>. Not always, though.
- It is possible for a standard t test to reject  $H_0$ , but the corresponding contrast test does not reject  $H_0$  (because the sample  $s^2$  is smaller than  $MS_W$ )
- We do not have any cases like that in our current data set
- Generally speaking, using  $MS_W$  is better than using the pooled  $s^2$  because more data contributes to the estimate

# OTHER CONTRASTS

- Comparing two means is actually a special case of using contrasts
- We can also compare various *combinations* of means

| Source  | df  | SS            | MS          | F      | p-value |
|---------|-----|---------------|-------------|--------|---------|
| Between | 7   | 2324584.6485  | 332083.5212 | 6.6500 | 0.00000 |
| Within  | 407 | 20324589.8142 | 49937.5671  |        |         |
| Total   | 414 | 22649174.4627 |             |        |         |

| Condition      | Mean               | Standard deviation | Sample size |
|----------------|--------------------|--------------------|-------------|
| Francis200F15  | 788.3333333333333  | 244.2585052255086  | 81          |
| Francis200S16  | 756.0007352941174  | 204.17983832898088 | 68          |
| Francis200F16  | 750.0464601769914  | 218.19667178177372 | 113         |
| Francis200F17  | 756.6531914893621  | 214.33283856802967 | 94          |
| FUSfall2018    | 766.1649999999998  | 172.00442964925605 | 30          |
| Psy200Spring15 | 1167.3535714285715 | 360.9423454196428  | 14          |
| FS16PSY200     | 776.26             | 224.8173218909571  | 10          |
| PSY2008HKIED   | 849.660000000002   | 191.92566073873397 | 5           |

• For example, we might wonder if the mean for classes taught by Dr. Francis differs from the mean for classes not taught by Dr. Francis

# OTHER CONTRASTS

- We set up *contrast weights*, *c*<sub>i</sub>, for each class' mean
- Our null hypothesis will be

$$H_0:\sum_{i=1}^K (c_i\mu_i)=0$$

• and we require that the contrast weights sum to 0:

$$\sum_{i=1}^{K} c_i = 0$$

• Our alternative hypothesis is

$$H_{a}:\sum_{i=1}^{K}(c_{i}\mu_{i})\neq 0$$

• (one-tailed tests are also possible)

# TEST STATISTIC

• We compute the weighted sum of means

$$L = \sum_{i=1}^{K} (c_i \overline{X}_i)$$

which has a standard error of:

$$s_L = \sqrt{MS_W \sum_{i=1}^K \frac{c_i^2}{n_i}}$$

$$t = \frac{L}{s_L}$$

• which follows a t distribution with

$$df = N - K$$

where N is the sum of sample sizes across all groups and K is the number of groups

Greg Francis (Purdue University)

#### ONLINE CALCULATOR

• To compare the mean of the four classes taught by Dr. Francis to the mean of other four classes, we use contrast weights of  $\pm 1$ 

#### Contrast test

To set up a contrast, enter a weight value for each population mean such that the weights sum to 0.

| Specify hypotheses:             |                                                                                                                                                                                                                                                               |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| H <sub>0: 1</sub> µFrancis20    | 00F15 + 1                                                                                                                                                                                                                                                     |  |  |
| Hai Two-tails                   |                                                                                                                                                                                                                                                               |  |  |
| α 0.05                          |                                                                                                                                                                                                                                                               |  |  |
| Run Contrast                    |                                                                                                                                                                                                                                                               |  |  |
| Contrast test summary           |                                                                                                                                                                                                                                                               |  |  |
| Null hypothesis                 | $ \begin{array}{l} H_0; \ (1)\mu_{Francis200F15} + (1)\mu_{Francis200F16} + (1)\mu_{Francis200F16} + (1)\mu_{Francis200F17} + \\ (-1)\mu_{FUSfall2018} + (-1)\mu_{Fsy200Spring15} + (-1)\mu_{FS16PSY200} + (-1)\mu_{FSY2008HKIED} = 0 \end{array} $           |  |  |
| Alternative<br>hypothesis       | $ \begin{split} H_{a^*}^*(1) \mu_{Francis200F15} + (1) \mu_{Francis200F16} + (1) \mu_{Francis200F16} + (1) \mu_{Francis200F17} + \\ (-1) \mu_{FUSfall2018} + (-1) \mu_{Psy200Spring15} + (-1) \mu_{FS16PSY200} + (-1) \mu_{PSY2008HKIED} \neq 0 \end{split} $ |  |  |
| Type I error rate               | α=0.05                                                                                                                                                                                                                                                        |  |  |
| Weighted sum of<br>sample means | L= -508.4048511347672                                                                                                                                                                                                                                         |  |  |
| Standard error                  | s <sub>L</sub> =150.1229164077                                                                                                                                                                                                                                |  |  |
| Test statistic                  | t=-3.386590557260787                                                                                                                                                                                                                                          |  |  |
| Degrees of<br>freedom           | df=407                                                                                                                                                                                                                                                        |  |  |
| p value                         | p=0.00077652497924241                                                                                                                                                                                                                                         |  |  |
| Decision                        | Reject the null hypothesis                                                                                                                                                                                                                                    |  |  |

(日) (四) (日) (日) (日)

# ONLINE CALCULATOR

• Other sets of contrast weights compare other combinations. For example, to contrast the mean of the non-US based class, *PSY2008HKIED*, against all the other classes, we could use:

| To set up a contrast, enter a weight value for each population mean such that the weights sum to 0. |                                                                                                                                                                                                                                                            |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Specify hypotheses:                                                                                 |                                                                                                                                                                                                                                                            |  |
| H <sub>0: 1 µPrancis2</sub>                                                                         | 00F15 + 1                                                                                                                                                                                                                                                  |  |
| 1 µFUSfall2018 <sup>4</sup>                                                                         | 1 $\mu_{PSy200Spring15}$ + 1 $\mu_{FS16PSY200}$ + -7 $\mu_{PSY2008HKIED}$ = 0                                                                                                                                                                              |  |
| Ha: Two-tails                                                                                       |                                                                                                                                                                                                                                                            |  |
| α 0.05                                                                                              |                                                                                                                                                                                                                                                            |  |
|                                                                                                     |                                                                                                                                                                                                                                                            |  |
| Run Contrast                                                                                        |                                                                                                                                                                                                                                                            |  |
|                                                                                                     | Contrast test summary                                                                                                                                                                                                                                      |  |
| Null hypothesis                                                                                     | $ \begin{array}{l} H_{0}:(1)\mu_{Francis200F15}+(1)\mu_{Francis200S16}+(1)\mu_{Francis200F16}+(1)\mu_{Francis200F17}+\\ (1)\mu_{FUSfall2018}+(1)\mu_{Psy200Spring15}+(1)\mu_{FS16PSY200}+(-7)\mu_{PSY2008HKIED}=0 \end{array} $                            |  |
| Alternative<br>hypothesis                                                                           | $ \begin{split} H_{a^{*}}(1) \mu_{Francis200F15} + (1) \mu_{Francis200516} + (1) \mu_{Francis200F16} + (1) \mu_{Francis200F17} + \\ (1) \mu_{FUSfall2018} + (1) \mu_{Psy200Spring15} + (1) \mu_{FS16PSY200} + (-7) \mu_{PSY2008HKIED} \neq 0 \end{split} $ |  |
| Type I error rate                                                                                   | α=0.05                                                                                                                                                                                                                                                     |  |
| Weighted sum of<br>sample means                                                                     | L= -186.80770827762535                                                                                                                                                                                                                                     |  |
| Standard error                                                                                      | s <sub>L</sub> =708.4755001381367                                                                                                                                                                                                                          |  |
| Test statistic                                                                                      | t=-0.2636756080361312                                                                                                                                                                                                                                      |  |
| Degrees of<br>freedom                                                                               | df=407                                                                                                                                                                                                                                                     |  |
| p value                                                                                             | p=0.7921633394031113                                                                                                                                                                                                                                       |  |
| Decision                                                                                            | Do not the reject null hypothesis                                                                                                                                                                                                                          |  |

• You do not have to use integer values for the *c<sub>i</sub>* terms, but it helps to avoid rounding issues.

Greg Francis (Purdue University)

< □ > < □ > < □ > < □ > < □ > < □ >

## ONLINE CALCULATOR

• It can be appropriate to set some weights equal to 0. For example, if you want to compare the mean from two classes in 2015 against the mean from three classes in 2016, you can set weights as:

| To set up a contra                       | st, enter a weight value for each population mean such that the weights sum to 0.                                                                                                                                                                           |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                          | Specify hypotheses:                                                                                                                                                                                                                                         |  |  |
| H <sub>0: -3</sub> µ <sub>Francis2</sub> | 00F15 + 2 μ <sub>Francis200S16</sub> + 2 μ <sub>Francis200F16</sub> + 0 μ <sub>Francis200F17</sub> +                                                                                                                                                        |  |  |
| 0 μ <sub>FUSfall2018</sub> +             | -3 $\mu_{Psy200Spring15}$ + 2 $\mu_{FS16PSY200}$ + 0 $\mu_{PSY2008HKIED}$ = 0                                                                                                                                                                               |  |  |
| Ha: Two-tails                            |                                                                                                                                                                                                                                                             |  |  |
| α 0.05                                   |                                                                                                                                                                                                                                                             |  |  |
|                                          |                                                                                                                                                                                                                                                             |  |  |
| Run Contrast                             |                                                                                                                                                                                                                                                             |  |  |
| Contrast test summary                    |                                                                                                                                                                                                                                                             |  |  |
| Null hypothesis                          | $ \begin{array}{l} H_0; (-3) \mu_{Francis200F15} + (2) \mu_{Francis200S16} + (2) \mu_{Francis200F16} + (0) \mu_{Francis200F17} + \\ (0) \mu_{FUSfall2018} + (-3) \mu_{Psy200Spring15} + (2) \mu_{FS16PSY200} + (0) \mu_{PSY2008HKIED} = 0 \end{array} $     |  |  |
| Alternative<br>hypothesis                | $ \begin{split} H_{a^{*}}(-3) \mu_{Francis200F15} + (2) \mu_{Francis200S16} + (2) \mu_{Francis200F16} + (0) \mu_{Francis200F17} + \\ (0) \mu_{FUSfall2018} + (-3) \mu_{Psy200Spring15} + (2) \mu_{FS16PSY200} + (0) \mu_{PSY2008HKIED} \neq 0 \end{split} $ |  |  |
| Type I error rate                        | α=0.05                                                                                                                                                                                                                                                      |  |  |
| Weighted sum of<br>sample means          | <i>L</i> = -1302.4463233434972                                                                                                                                                                                                                              |  |  |
| Standard error                           | $s_L = 249.66291788092158$                                                                                                                                                                                                                                  |  |  |
| Test statistic                           | t=-5.216819279364137                                                                                                                                                                                                                                        |  |  |
| Degrees of<br>freedom                    | <i>df</i> =407                                                                                                                                                                                                                                              |  |  |
| p value                                  | p=2.905150702225967e-7                                                                                                                                                                                                                                      |  |  |
| Decision                                 | Reject the null hypothesis                                                                                                                                                                                                                                  |  |  |

< ∃ ▶

# SPECIAL CASE

• Comparing two means is just a special case where the contrast weights for those means are set to  $\pm 1$  and the other weights are set to 0:

| To set up a contrast, enter a weight value for each population mean such that the weights sum to 0. |                                                                                                                                                                                                                                                          |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Specify hypotheses:                                                                                 |                                                                                                                                                                                                                                                          |  |  |
| H <sub>0: -1 µPrancis2</sub>                                                                        |                                                                                                                                                                                                                                                          |  |  |
| 0 μFUSfall2018 + 1 μPsy200Spring15 + 0 μFS16PSY200 + 0 μPSY2008HKIED = 0                            |                                                                                                                                                                                                                                                          |  |  |
| Ha: Two-tails                                                                                       |                                                                                                                                                                                                                                                          |  |  |
| α 0.05                                                                                              |                                                                                                                                                                                                                                                          |  |  |
|                                                                                                     |                                                                                                                                                                                                                                                          |  |  |
| Run Contrast                                                                                        |                                                                                                                                                                                                                                                          |  |  |
| Contrast test summary                                                                               |                                                                                                                                                                                                                                                          |  |  |
| Null hypothesis                                                                                     | $ \begin{array}{l} H_0; \ (-1) \mu_{Francis200F15} + (0) \mu_{Francis200516} + (0) \mu_{Francis200F16} + (0) \mu_{Francis200F17} + \\ (0) \mu_{FUSfall2018} + (1) \mu_{Psy2008pring15} + (0) \mu_{FS16PSY200} + (0) \mu_{PSY2008HKIED} = 0 \end{array} $ |  |  |
| Alternative<br>hypothesis                                                                           | $ \begin{array}{l} H_{a^{*}}(-1)\mu_{Francis200F15} + (0)\mu_{Francis200516} + (0)\mu_{Francis200F16} + (0)\mu_{Francis200F17} + \\ (0)\mu_{FUSfall2018} + (1)\mu_{Psy200Spring15} + (0)\mu_{FS16PSY200} + (0)\mu_{PSY2008HKIED} \neq 0 \end{array} $    |  |  |
| Type I error rate                                                                                   | α=0.05                                                                                                                                                                                                                                                   |  |  |
| Weighted sum of<br>sample means                                                                     | L= 379.020238095238                                                                                                                                                                                                                                      |  |  |
| Standard error                                                                                      | s <sub>L</sub> =64.67984426050968                                                                                                                                                                                                                        |  |  |
| Test statistic                                                                                      | t=5.859943579466054                                                                                                                                                                                                                                      |  |  |
| Degrees of<br>freedom                                                                               | <i>df</i> =407                                                                                                                                                                                                                                           |  |  |
| p value                                                                                             | p=9.569574910273104e-9                                                                                                                                                                                                                                   |  |  |
| Decision                                                                                            | Reject the null hypothesis                                                                                                                                                                                                                               |  |  |

This gives the same result as we computed previously

< □ > < □ > < □ > < □ > < □ > < □ >

# MULTIPLE TESTING

- There are an *enormous* number of different contrasts that you could create
- If you require a significant ANOVA before running any contrasts, then you can control the Type I error rate to be no higher than  $\alpha$
- However, we have a new kind of "conditional" Type I error
- Given that the ANOVA indicates there is some difference in means, what means (or combinations of means) differ? For some contrasts the  $H_0$  is true, but, just due to random sampling, they indicate that there is a difference

# MULTIPLE TESTING

- Thus, we have a new multiple testing problem for identifying the differences; even though we only get to that situation with probability α if the ANOVA omnibus H<sub>0</sub> is true
- Worse, it could be that  $\mu_7 \neq \mu_8$ , so you reject the ANOVA  $H_0$
- but then you run contrasts for other means where  $\mu_i = \mu_j$
- Generally, it is not a good idea to try all possible contrasts. Contrasts (and hypothesis testing in general) make the most sense when you have some specific plans to compare combinations of means

A B b A B b

# CONCLUSIONS

- interpreting an ANOVA
- identifying differences
- contrast tests

A (10) < A (10) < A (10) </p>

## NEXT TIME

- power for ANOVA
- power for contrasts

Keep it simple!

- 4 回 ト 4 ヨ ト 4 ヨ ト