Attractive names sustain increased vegetable intake in schools

Brian Wansink ${ }^{\text {a,* }}$, David R. Just ${ }^{\text {b }}$, Collin R. Payne ${ }^{\text {c }}$, Matthew Z. Klinger ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Applied Economics and Management at Cornell University, 15 Warren Hall, Ithaca, NY 14853-7801, USA
${ }^{\mathrm{b}}$ Department of Applied Economics and Management at Cornell University, 16 Warren Hall, Ithaca, NY 14853-7801, USA
${ }^{\text {c }}$ New Mexico State University, College of Business, MSC 5280, PO Box 30001, Las Cruces, NM 88003-8001, USA
${ }^{\text {d }}$ Half Hollow Hills High School East, 50 Vanderbilt Parkway, Dix Hills, NY 11746, USA

A R T I C L E I N F O

Available online 27 July 2012
Keywords:
Food intake
Obesity
School lunches
Nutrition
Healthy

Abstract

Objective: This study will determine if the means to increase the selection of vegetable in school rooms. Methods: Study 1 paired an attracti with carro se elementary schools ($\mathrm{n}=147$) and measured selection and consumption oy in two elementary schools ($\mathrm{n}=$ two-month period. Both studies

Results: Study 1 found that ele named as "X-ray Vision Carrots," th found that elementa sool studen dishes $(\mathrm{p}<0.001) \mathrm{wl}$ more likely

Discussion: Attract tary schools. The scala executed f high school student volunteer.

Study 1: how attractive names impact the intake of healthy foods

After obtaining Institutional Review Board approval from Cornell University and parental consent, 147 (78 female) children ranging from 8 to 11 years old were recruited from five ethnically and economically diverse schools. The menus for each lunch were unchanged except for the addition of carrots.

Methods

On three different days at each school, carrots were offered in addition to the school's scheduled offerings. On the first and last days of the study (Monday and Friday), carrots were served as they normally were, unnamed. These two days served as pre- and post-test controls, respectively. On the second day of the study (Thursday), carrots were served and given an attractive name "X-ray Vision Carrots," a simple name "The Food of the Day," or unnamed (control).

For the 113 students who were present for all three study days, their choices at each meal were unobtrusively recorded. Following lunch, the weight of any remaining carrots was subtracted from their starting weight to determine the actual amount eaten.

Results

The results from Analysis of Variance (ANOVA) indicated that the

[^0]three different naming conditions had no impact on the amount of

Table 1
Study 1: elementary students consumed more carrots when attractively named.

	Named as "X-ray Vision Carrots" ($n=32$)	Named as "Food of the Day" $(n=38)$	Unnamed (Control) ($n=45$)	P-value
	Mean (SD)	$\begin{aligned} & \text { Mean } \\ & \text { (SD) } \end{aligned}$	Mean (SD)	
Number taken	$\begin{aligned} & 17.1 \\ & (17.6) \end{aligned}$	$\begin{aligned} & 14.6 \\ & (14.5) \end{aligned}$	$\begin{aligned} & 19.4 \\ & (19.9) \end{aligned}$	0.47
Number eaten	$\begin{aligned} & 11.3 \\ & (16.3) \end{aligned}$	$\begin{aligned} & 4.7 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 6.8 \\ & (8.7) \end{aligned}$	0.04
Number uneaten	$\begin{aligned} & 6.7 \\ & (9.6) \end{aligned}$	$\begin{aligned} & 10.3 \\ & (12.5) \end{aligned}$	$\begin{aligned} & 13.2 \\ & (16.9) \end{aligned}$	0.14
\% Eaten	65.9	32.0	35.1	<0.01

Study conducted in New York in 2011.
carrots students selected ($p=0.47$) but they did influence how much was eaten. As Table 1 indicates, children ate more of their carrots when named "X-ray Vision Carrots" than when named "Food of the Day" ($p=0.02$) or when unnamed ($p=0.06$).

Indeed, whereas 66% of carrots named "X-ray Vision Carrots" were eaten, only 32% of carrots named "Food of the Day" were eaten and 35% of unnamed carrots were eaten ($p<0.05$). It also influenced carry-over effects. Children who were not exposed to carrots named "X-ray Vision Carrots" on Thursday were less likely to take carrots on Friday's post-test session compared to Monday's pre-test session (Mean $=-3.04, S D=11.69$). Conversely, those who were exposed to carrots named "X-ray Vision Carrots" on Thursday were more likely to take carrots (Mean $=4.53, S D=17.66$), $p=0.03$ (1 -tailed).

Study 2: a longitudinal study of attractively-named veget middle schools

Participants were drawn from two neighbo: schools outside New York City. The study was months (40 school lunch days). The schooly re sin menus identical. The study focused on th se ite most frequently served-carrots, green \downarrow

Methods

Both schools modified thrir cash regis to record the purchase of hot and cold vegetable ces separately. obtaining approval from Cornell Universi mstity inal Review ooard, we collected de-identified studen el pu data. The data include purchase observations for 1552 , $54.3 \% \mathrm{p}$) of which 47.8% attended the treatment
For the
food ite as period), both schools offered
without creative naming of vegetables or
other items. In the second 20-day period, the same hot vegetables served in the treatment school were given names selected by a high school student volunteer. These included names such as X-ray Vision Carrots, Power Punch Broccoli, Silly Dilly Green Beans, and Tiny Tasty Tree Tops. They were displayed on printed cards placed next to the food items in the line. The control school served the same items as the treatment school but did not provide any such names.

The purchase pattern of each child was recorded in both schools over the course of the study. Our study included 40,778 total child-day observations, with roughly half in the treatment group. To investigate the ease of implementation and potential scalability of this method, a high school student wa mited to conduct the study. He received school credit for hi

Results

Table 2 presents summ ections by treatment and month. Comp othe line ro Month 1, the proportion of students tal hot ctable durins the attractive names intervention (Mor 3) in by 99.0° a the other hand, the proportion of stude aking a getar the control school declined by 16.2% fro th 1 to Mon differences are significant at the $p<0.0$ el he differenc vetween the two is also highly significant ($\mathrm{p}<0.01$). Sa of broccoli increased by 109.4% ($p<0.001$), sele green bean 176.9% ($p<0.001$), and selection of carrots (ns). Significanc/s based on an F-statistic of differences in centage purchasing in Month 1 and Month 2.
By employ a binary logistic model with just the dummy vari-
for schg month and treatment period, we find that giving the attractive names increases the number of students taking unoy 12% ($\mathrm{p}<0.001$) and decreases the amount of cold veg-
les taken by 1.7%. Given the low base-rate incidence of vegetable n, this represents nearly a 100% increase.

Discussion

In combination, these studies demonstrate that using an attractive name to describe a healthy food in a cafeteria is robustly effective, persistent, and scalable with little or no money or experience. These names were not carefully crafted, discussed in focus groups, and then pre-tested. Additionally, this study shows that the impact of attractive names lasts. Over the course of two months, the selection of hot vegetable side dishes went up 99% in the treatment school while declining 16% in the control school.

Most importantly, this study shows that an attractive name intervention is scalable for little or no cost. The instructions and guidance for this study were developed with the intent that any cafeteria worker or high school student volunteer could implement the changes. To this end, the sophomore student volunteer generated the names,

Table 2

Study 2: more getables were selected during the month they were attractively named.

	Treatment group			Control group			P-value
	Month 1 Baseline mean Unnamed (SD)	Month 2 Intervention mean Attractively named (SD)	\% Change	Month 1 Control mean Unnamed (SD)	Month 2 Control mean Unnamed (SD)	\% Change	
All hot vegetables	$\begin{aligned} & 0.018 \\ & (0.133) \end{aligned}$	$\begin{aligned} & 0.054 \\ & (0.227) \end{aligned}$	99.0***	$\begin{aligned} & 0.086 \\ & (0.281) \end{aligned}$	$\begin{aligned} & 0.062 \\ & (0.241) \end{aligned}$	$-16.2^{* * *}$	<0.01
Broccoli	$\begin{aligned} & 0.021 \\ & (0.145) \end{aligned}$	$\begin{aligned} & 0.073 \\ & (0.260) \end{aligned}$	109.4***	$\begin{aligned} & 0.120 \\ & (0.325) \end{aligned}$	$\begin{aligned} & 0.018 \\ & (0.136) \end{aligned}$	$-73.3^{* * *}$	<0.01
Green beans	$\begin{aligned} & 0.002 \\ & (0.045) \end{aligned}$	$\begin{aligned} & 0.033 \\ & (0.178) \end{aligned}$	176.9***	$\begin{aligned} & 0.047 \\ & (0.211) \end{aligned}$	$\begin{aligned} & 0.099 \\ & (0.298) \end{aligned}$	35.7 ***	0.19
Carrots	$\begin{aligned} & 0.017 \\ & (0.128) \end{aligned}$	$\begin{aligned} & 0.023 \\ & (0.149) \end{aligned}$	30.2	$\begin{aligned} & 0.030 \\ & (0.171) \end{aligned}$	$\begin{aligned} & 0.046 \\ & (0.209) \end{aligned}$	41.5	0.52

[^1]Significance based on an F-statistic of differences in percent purchasing between Month 1 and Month $2 .{ }^{* * *}$ indicates $p<0.001$.
created the name cards, and executed the study at a negligible cost. Many of the interventions for school lunchrooms are not scalable because they are either too complicated, too labor-intensive, or too costly. The success of one student who implemented this at a negligible cost is a testament to its scalability across other schools.

Conflict of interest statement

The authors declare no conflicts of interest.

Acknowledgments

The authors thank Julia Hastings-Black for editorial assistance. Study 1 was funded by the Robert Wood Johnson Foundation through its Healthy Eating Research program. Study 2 was funded by the United States Department of Agriculture's Food Nutrition Service and Economic Research Center.

References

Campbell, K., Waters, E., O'Meara, S., Summerbell, C., 2001. Interventions for preventing obesity in childhood. A systematic review. Obes. Rev. 2, 149-157.
Cardello, A.V., 1996. The role of the human senses in food acceptance. In: Meiselman, H.L., Macfie, H.J.H. (Eds.), Food Choice Acceptance and Consumption. Blackie Academic, London.
Keren, R., Pati, S., Feudtner, C., 2004. The generation gap: differences between children and adults pertinent to economic evaluations of health interventions. PharmacoEconomics 22, 71-81.
Tuorila, H.M., Meiselman, H.L., Cardello, A.V., Lesher, L.L., 1998. Effect of expectations and the definition of product category on acceptance of unfamiliar foods. Food Qual. Prefer. 13, 561-569.
Wansink, B., 2003. Overcoming the taste stigma of soy. J. Food Sci. 68, 2604-2606.
Wansink, B., Park, S.B., 2002. Sensory suggestiveness taste? J. Sens. Stud. 17, 483-491.
Wansink, B., van Ittersum, K., Painter, J.E., 2001 labels' effect on sales. Cornell Hotel Restaur. Admin. Q. 42
Wansink, B., van Ittersum, K., Painter, J.E., 20 sensory perceptions in restaurants. F Quad w descriptiv

[^0]: * Corresponding author. Fax: +1 6072559984.

 E-mail addresses: wansink@cornell.edu (B. Wansink), drj3@cornell.edu (D.R. Just), crp@nmsu.edu (C.R. Payne), mklimkli123@gmail.com (M.Z. Klinger).

[^1]: Study conducted in New York in 2011. Means represent fraction of students selecting. Each child-day is treated as a single observation.

