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ABSTRACT

A variety of modern devices use multifunction displays to present hierarchically ordered information.
Users interact with the devices by pushing buttons to move through the hierarchy and access needed in-
formation. Several studies have shown that the mapping of hierarchy labels to buttons effects user per-
formance. This article describes a quantitative methodology that optimizes such mappings, relative to a
defined cost function. Methods for defining a model of user search, measuring necessary model param-
eters, and creating an optimal mapping are described and tested. In an experimental test of the method,
the optimized mapping resulted in a 32% reduction in search time.

1. INTRODUCTION

This article introduces a computational method of assigning labels and functions to user se-
lections in a multifunction display (MFD). An MFD consists of a computer display screen
that provides information in response to a user’s request. Through interaction with an inter-
face (usually button pushes), the user moves through a hierarchical representation of infor-
mation. Automated teller machines, medical devices, aircraft cockpits, electric typewriters,
retail registers,fax machines, and many other devices utilize MFDs, with varying degrees of
complexity.

At some point in the design of an MFD, decisions must be made about how to map the
various parts of the information hierarchy to user actions (e.g., button pushes). These deci-
sions can affect user performance, as demonstrated by Rogers, Cabrera, Walker, Gilbert,
and Fisk (1996) for automated tellers; Obradovich and Woods (1996) and Cook and Woods
(1996) for medical devices; Cuomo, Borghesani, Khan, and Violett (1998) for Intranet in-
formation servers; and Reising and Curry (1987), Dohme (1995), and Sirevaag et al. (1993)
for aircraft flight controls.

Mapping hierarchy information to MFD buttons is a challenging task. The human–com-
puter interactions involved in accessing information from an MFD are complicated and not
entirely understood. Moreover, even a small hierarchy database can be mapped to hardware
buttons in a vast number of ways (see Fisher, Yungkurth, & Moss, 1990, for a discussion),
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so combinatorial explosion quickly precludes an exhaustive search of all possible
mappings. As a result, such mappings are, at best, created by experts who rely on experience
and general guidelines (Calhoun, 1978; Department of Defense, 1981; Holley & Busbridge,
1995; Lind, 1981; Spiger & Farrell, 1982; Williges, Williges, & Fainter, 1988). For exam-
ple, one guideline suggests that frequently used labels should be the most accessible to al-
low users to quickly access those pieces of information needed most often. A similar
guideline suggests that frequently used labels should be mapped to “ideal” buttons that are
accessed more quickly than other buttons. Likewise, another guideline suggests that se-
quences of button presses should be designed to minimize movements. Unfortunately, it is
unclear how to satisfy these, and other, guidelines. Applying the guidelines is problematic
because they often conflict with each other, and mapping one label to a button can force
movement of many other labels to accommodate the guidelines.

Recently, there has been interest in computational methods that can optimize the design
of computer consoles (Farrell, 1997; Fisher, 1993; Hwa, Marks, & Shieber, 1995;
Roske-Hofstrand & Paap, 1986; Sargent, Kay, & Sargent, 1997). The general approach is to
gather relevant data about the human–computer interaction, build a quantitative model of
that interaction, and then find a design that provides the best model performance. This arti-
cle demonstrates how to apply this approach to assigning MFD labels to button presses.

A slightly different goal in the design of MFDs has also involved quantitative modeling,
and it is worth discussing because the current approach is partly an outgrowth of these ideas.
MFDs utilize a type of menu interface, and earlier quantitative analyses of menu search ex-
plored trade-offs between depth and breadth of hierarchy menus. At issue is whether it is
better to have a broad design (with many menu options per page) or a deep design (with
many levels of the hierarchy). By imposing several restrictions on hierarchy types and user
behavior, Lee and MacGregor (1985) found an analytical form for expected search time in a
menu interface. They used this analysis to conclude that deep hierarchies are preferred over
broad hierarchies because the latter require substantial time searching for appropriate la-
bels. Lee and MacGregor’s analysis implicitly assumed that users did not know which but-
ton they should push and that there was no organization among the labels to guide the
search. Paap and Roske-Hofstrand (1986) demonstrated that grouping labels could dramati-
cally decrease the time required to find a desired label on a menu page. As a result, they con-
cluded that menus should be broad rather than deep. Fisher et al. (1990) extended this line of
analysis to a larger class of hierarchy structures. Norman (1991) provided an excellent sum-
mary of this and related lines of research. Unfortunately, the restrictions on hierarchy types
and the model of user search preclude applying these analyses to the problem of optimizing
the assignment of labels to MFD buttons.

The next section describes a quantitative model that considers the mapping of hierarchy
labels to MFD buttons. A method for defining the model parameters is described as is an op-
timization approach that allows a computer to find the mapping between labels and MFD
buttons, which minimizes expected search time. An experiment to test the methodology is
then described. The final section discusses extensions to the approach taken here.

2. AN OPTIMIZATION METHOD

Creating an optimal mapping of hierarchy labels to MFD buttons requires two steps. First,
the designer must build a quantitative model of the time needed to search through the hierar-
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chy. Second, an optimization algorithm must be used to identify the best mapping, relative to
the model. These steps are described next.

2.1. A Quantitative Model of User Search Time

The methodology described in this article most naturally applies to situations in which the
number of available buttons and labels, and their hierarchical organization, are known. In
these situations, the remaining task is to map the labels to buttons while preserving the estab-
lished hierarchical order. A generalization of this approach to allow optimization of the hier-
archical organization along with button mapping will be discussed in Section 5.

The model assumes that the time to reach a target label consists of independent but-
ton-path time and label time. A button path is the sequence of buttons that must be pushed to
reach a desired label. Button-path time includes the time for the user to physically reach and
push each of the buttons needed to move through the hierarchy. For example, one might ex-
pect that a path consisting of repeated selection of a single button would have a short but-
ton-path time. LetB(i) correspond to the time needed to move through the button path
assigned to labeli.

Label time includes everything that is not button-path time. Label time may include read-
ing and categorization time if the user is unfamiliar with the labels and must visually search
for target labels. It may include time for memory recall if the user has previous experience
searching for the target label. Label time may include computer response time for situations
when displaying information requires substantial time. Label time may also include move-
ment time that is specific to a label rather than to a button path. For example, the functions
associated with some labels may only be needed under certain contexts (e.g., evasive ac-
tions in military aircraft). In those contexts, it may take more (or less) time to reach a button
than is normal. LetL(i) correspond to the label time fori. An assumption of the model is that
label time is unrelated to the sequence of buttons that might make up the button path as-
signed to a label. This is an assumption that surely does not hold for all situations but can be
experimentally tested.

The model proposes that the total time to reach a target labeli is the sum of button path
and label times:

T i B i L i( ) ( ) ( )= + (1)

The mean search time to find a label is then
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wheremis the number of labels in the hierarchy andpi is the probability of searching for label
i. For simplicity, assume that the design goal is to minimize mean search time. Because the
second summation does not vary with button path, finding the optimal assignment of button
paths to target labels is equivalent to finding the set of button paths that minimizes the first
summation. Designate the button path for labeli as a vectorBi and letβ =U i

m
=1 Bi be the set of

buttons paths with assigned labels. Letβ* be the set of button paths that minimizes expected
search time. Then
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whereB(i) is the button-path time associated with button-pathBi. Different choices ofβ cor-
respond to different mappings of labels to button paths. The summation in Equation 3 is the
expected button-path time and can be interpreted as the cost for choosing a mapping. Within
the context of the model, the task of optimally mapping labels to buttons is the same as the
task of finding a mapping that minimizes this cost. The next section describes a computa-
tional method for finding the mapping that minimizes this cost.

2.2. Optimizing the Design

It might seem that with a quantified model of search times, one could simply let a computer
consider all possible mappings of labels to button paths and find the mapping that minimizes
expected search time. Unfortunately, the computational magnitude of the problem precludes
such an exhaustive search. Even a small MFD hierarchy with eight buttons and three levels,
for instance, provides 512 unique button paths that reach to the third level. Suppose every la-
bel is filled at every level so that there are eight choices at the top level (one button press),
eight choices at each second level (two button presses), and eight choices for each bottom
level (three button presses). If the problem is constrained so that all the hierarchical relations
between labels must be maintained in their button paths (as in the discussion next), then at
each level there are 8! = 40,320 (8 factorial) possible assignments of labels. Thus, the total
number of possible mappings that still maintain the hierarchical relations among labels is the
cube of 8! or approximately 6.55 × 1013. As the size of the MFD increases, the number of
mappings becomes so enormous that even high-speed computers cannot consider all the pos-
sibilities in a timely manner (for example, MFDs with 20 buttons and five levels are not ex-
cessively large in real world applications, but the number of mappings is approximately 8.52
× 1091). Thus, an approach other than exhaustive trial and error is needed.

For complex optimization problems of this type, computer scientists often apply a tech-
nique calledhill-climbing. Given an initial mapping, a computer can calculate its cost using
the sum in Equation 3. If the designer modifies the mapping and the new cost is smaller than
the old cost, then the new mapping replaces the older mapping. Iterating this process even-
tually leads to a mapping for which the mapping cannot be reduced further. Intuitively, each
possible mapping of labels to buttons corresponds to a position in a (multidimensional)
space. The cost at each position defines a surface in the space. Changing the mapping of la-
bels to buttons is, then, like moving through the space. Hill-climbing techniques start at an
initial point in space and move in a direction that goes down the cost curve (thus,hill-de-
scendingmight be a better term for these techniques).

This methodology was applied to the problem of mapping labels to button paths. An ini-
tial mapping consisted of randomly assigning labels to button paths (in a way that preserved
the appropriate hierarchical relations). A pair of labels with a common parent node (i.e.,
each node was in the same position in the hierarchy structure but with button paths that dif-
fered in the last button) were randomly chosen and swapped button paths. The mean but-
ton-path time was calculated both before and after the swap. If the swap resulted in a
reduction in search time, it was kept. Otherwise the labels were returned to their original
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button paths, and a new random pair was selected. As it made each swap, the program also
automatically updated the button paths for children (i.e., those labels that are hierarchically
below a label) of moved labels, as their paths were modified by the change of their parent.
This procedure was repeated many times until there seemed to be no further changes in
mean button-path time. The final assignment of labels to button paths was taken as the best.

A problem with the hill-climbing approach is that because it never allows changes that
go up the cost curve, the system can become trapped in local valleys and, thus, not find a
deeper global minimum over the next hill. Simulated annealing (Geman & Geman, 1984)
avoids this problem by introducing extra “energy” into the system. Initially, movement can
occur in directions that go up or down the cost curve. The relative probability of moving up
the cost curve is related to the cost itself so that higher costs have smaller probabilities of al-
lowing upward movements. A temperature parameter gradually lowers the overall probabil-
ity of moving up the cost surface so the system is likely to become stuck in the deepest
valley of the curve, a global minimum. The system is more likely to climb out of local cost
minima because they are not as deep. By decreasing the temperature gradually, the system is
very likely, but not guaranteed, to rest in a state that corresponds to the minimum of the cost
function. In this application, this means the system will likely choose a mapping of labels to
button paths that minimizes the average model button-path time.

3. MODELING BUTTON-PATH TIME

Minimizing the mean button-path time requires knowing all possibleBi terms. That is, the
designer must know the button-path time for every possible combination of button presses
that can lead to a label. One way to do this is to directly measure movement times for every
possible set of button pushes. This is feasible for a small set of buttons with few hierarchy
levels. However, as the number of levels or number of buttons increases, the number of paths
increases on the order ofnv, wheren is the number of buttons on each MFD page (breadth),
andv is the number of levels (depth) in the hierarchy. Such increases in problem size pre-
clude attempts to measure all button paths. For example, a system with eight buttons and five
levels would have 37,448 different button paths, and each path time would need to be esti-
mated separately.

Landauer (1987) suggested that Fitts’s (1954) law could be used to model movement
times in MFD-type devices. Fitts’s law proposes that mean movement time is a function of
the logarithm of distance moved divided by target width. If Fitts’s law held for MFD
searches, a designer could use its predictions of motor times to calculate the time needed to
move through a path of buttons. An implication of Fitts’s law would be that movements to
and from corner buttons of an MFD should take longer than movements to and from other
buttons because the corner buttons are relatively distant from other buttons. On the other
hand, one could imagine that corner buttons, by their isolation, are easier to identify and
strike, thereby leading to the opposite results. So it is unclear whether Fitts’s law should ad-
equately describe movement times in this context.

To be able to consider situations in which Fitts’s (1954) law might not hold, this study
used a model of button-path times that is more likely to apply than Fitts’s law but is simpler
than estimating each path time individually. The path to a label in an MFD hierarchy can be
identified by the necessary sequence of button pushes from the top hierarchy level. Number
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the buttons of the MFD 1,…,n. Each button path can be represented by an ordered set [b1 …,
bv], wherev is the number of buttons that need be pushed to reach the end of the path. The
model approximates button-path time by summing the time needed to move from one but-
ton to strike the next. Lets[j, k] indicate the time needed to move from buttonj to strike but-
tonk. Then, an estimate of the time needed to travel through the button path of labeli is

B i s b i b ij j
j

( ) [ ( ), ( )]= +
=

−

∑ 1
0

1ν (4)

The first term in the summations[b0(i), b1(i)] is the time taken to strike the first button in the
path. The rest of the summation then adds the time needed to move from the first button to the
second, the second to the third, and so on until the button related to the label is pressed.

Such a scheme greatly reduces the effort needed to build the model because the experi-
menter needs only to estimate thes[j, k] terms. Such estimation requires measuring the time
between every pair of buttons. For a hierarchy with eight buttons, this requires only 64 mea-
sures—regardless of the number of hierarchy levels.

4. EXPERIMENT

4.1. Method

4.1.1. Participants. All participants received course credit at Purdue University.
There were two groups of participants. Group 1 (16 participants) was used to gather data to
define the model of button-path times. That data was then used to build an optimal mapping
of labels to button paths, and Group 2 (11 participants) was used to validate the resulting hi-
erarchy. Participants were run individually, and an experimental session lasted approxi-
mately 25 min.

4.1.2. Materials. An MFD was emulated with a program written in Java and run on
a Silicon Graphics workstation. It consisted of a frame with buttons along the left, right, and
bottom sides. The buttons on the left and right sides had modifiable labels that changed as the
user traversed (with mouse clicks) through the virtual space of the hierarchy. Figure 1 shows
screen shots of the frame.

The top level of the information hierarchy consisted of music types. The middle level
consisted of music acts appropriate for the selected music type. The bottom level of the hier-
archy consisted of songs by the appropriate music act. All totaled there were 585 labels in
the hierarchy database. The participant’s task was to search through the MFD to click on the
button containing a requested target label. Each target label was given in the middle of the
frame (see Figure 1), and the search always started from the top level. To aid in the search, if
the target label was a song title, the participant was also given the appropriate music act.

Each participant sequentially went through three MFD searches: practice, button-path
measurements, and test. In the practice search, a random subset of 10 labels was selected as
targets. Each target label was randomly assigned a presentation frequency between 1 and 10
and was fixed across participants and groups. All the labels were then randomly assigned
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FIGURE 1 An emulated multifunction display interface. Users moved through the information hierarchy
by selecting buttons. A target label,Twist(a song by the artist Korn), is presented on the middle of the frame.
The number on the bottom left indicates the number of remaining trials. (Top) The top hierarchy level con-
sisted of music categories. (Middle) SelectingMetalfrom the top levels shows artists for the selected music
category. (Bottom) SelectingKorn shows songs by the artist.



button paths with the restriction that the hierarchical organization of information was pre-
served in the button paths. In the practice condition, participants searched for every label
with its appropriate frequency (55 searches total). The practice searches were designed to
provide the participant with experience moving the mouse to press buttons and to partly fa-
miliarize the participant with the hierarchical relations among the labels in the database.

After finishing the practice search, button pair movement times were estimated for the
participant. This was done with a modified version of the MFD frame. For the modified
frame, the labels were replaced with numbers, and the participant’s task was to move as
quickly as possible between the indicated buttons (see Figure 2). Each participant made two
movements to every pair of buttons (except movements to the Next target button and move-
ments to and from the Up level button). For each movement, the time between the first but-
ton press and the second button press was measured and stored by the computer. These
times, when averaged across participants, provided thes[bj, bj + 1] times used in Equation 4.

Finally, the test was much like the practice search except that a new set of target labels
were selected, and the mapping of labels to button paths was modified. For Group 1, the la-
bels were mapped to button paths in a random order that was fixed across participants. For
Group 2 the labels were mapped to button paths as prescribed by the optimization proce-
dure. Every participant went through the target set twice, and search times were recorded
only on the second set.

4.2. Results

The search and movement time data were used to explore four main topics: (a) to explore
whether or not searches in the optimized hierarchy were faster than searches in the
nonoptimized hierarchy, (b) to see if Fitts’s (1954) law could be applied to the movement
time data, (c) to explore learning effects by looking at search time differences between target
labels that were repeated many times compared to those rarely searched for, and (d) to ex-
plore whether the assumed independence between button path and label times is valid.
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4.2.1. Effects of optimization. Participants in Group 1, with random assign-
ments of labels to button paths, required an average of 3.7 sec to reach a target label. Partici-
pants in Group 2, with the calculated optimal assignments, required an average of 2.5 sec.
Searching the optimized MFD was 32% faster than the random MFD. This finding demon-
strates that the optimization approach assigned labels to buttons in a manner that reduced
overall search time. Looking through the optimized hierarchy reveals why it produced
shorter times. The optimal hierarchy placed the most frequently searched for labels on paths
that involved repeated pressing of the same button. Figure 3 demonstrates such a path for a
commonly accessed label. Those labels that could not be placed along a repeating path had
paths that minimized movement time. In general, this organization is consistent with the
guidelines suggested by design experts.

Details of the optimized mapping can be seen in Figure 4, which plots the average time
needed to move between buttons as a function of label search frequency. For every label, the
optimized MFD has shorter between-button movement times. Averaged across all target la-
bels, the random mapping had a between-button movement time of 701 ms, whereas the op-
timized mapping had an average of 469 ms. The reduction in movement time for all target
labels indicates that the target set was sufficiently distributed across the hierarchy topics so
that nearly every label could be placed on a button path involving repeated selection of a
single button. If the target set increased in size or used only labels for common topics, the
optimization approach would assign the most frequently searched for labels to button paths
with short times, thereby forcing less frequently searched for labels to be mapped to longer
button paths. There is a slight tendency for this phenomenon in Figure 4, as those labels
searched for most often tend to have slightly shorter between-button times than labels that
are rarely searched for.

Participants who worked with the optimized hierarchy reported that the overall feel of
searching for information was that the target label would likely be found where they ex-
pected it to be and would be easily accessible. It seems likely, but was not explicitly investi-
gated, that in addition to reducing search times, such optimal mappings will produce fewer
errors and increase overall user satisfaction.

4.2.2. Details of button press times. Figure 5a plots between-button move-
ment times for buttons averaged across both groups. The numbers on the abscissa corre-
spond to the buttons as in Figure 2 except that number 8 corresponds to the Next target but-
ton. Separate curves are averages for movements ending with the button on the abscissa (To),
movements starting with the button on the abscissa (From), and movements that involved
two successive strikes of the same button (Repeat). Two properties are noteworthy. First, for
button paths that involve repeated selection of the same button, all buttons give essentially
the same time and that time is substantially shorter than is needed to move between buttons.
Second, both the time to and the time from curves show a scalloped shape with longer reac-
tion times for buttons on the corners of the frame (buttons 0, 3, 4, and 7). This suggests that
buttons in the middle of the MFD have an advantage over corner buttons because middle but-
tons are, on average, closer to more buttons than corner buttons.

These findings suggest a reduction in search time for those paths that involve repeated
selections of the same button. For those paths that must involve selecting different buttons,
middle buttons generally have an advantage over corner buttons. The latter property is qual-
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itatively consistent with Fitts’s (1954) law, which suggests that the time to move between
buttons should obey the equation

a
D

S
log2



 


 (5)
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FIGURE 3 The optimal multifunction display interface. The user needs only to press one button repeat-
edly to reach the target song,Sober. Tool is the artist. Music categories are shown in the top box, artists in the
Metalcategory are shown in the middle box, and songs by Tool are shown in the bottom box.
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FIGURE 4 The average time needed to move between buttons for the paths of target labels. The optimal
multifunction display design used button paths with shorter movement times than the random design.

FIGURE 5 The average time needed to move to, move from, or repeat pressing a button. The relatively
flat shape of the repeat curve indicates that no single button was repeated more quickly than any other. The
scallop shape of the top curves indicates that the corner buttons (0, 3, 4, and 7) required longer times to move
to and from; probably because of their relative isolation compared to the other buttons.



whereD is the distance between a pair of buttons,S is the size of the button that is being
moved to, anda is a constant scaling factor estimated from the data. Using Fitts’s law to
model between-button times in an MFD requires some additional terms. Fitts’s law de-
scribes the time to move between buttons but does not necessarily include time needed to
then strike a button. Likewise, in repeated selection of a button, there is no movement, so
Fitts’s law does not apply. A simple model of the time to move between buttonsi andj would
sum these terms:
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whereDjk is the distance between buttonsj andk,the notation [x]+ = max(0,x) corresponds to
halfwaverectification,andcis theaveragetimeneededtostrikeabutton inrapidsuccession:
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Using linear regression, it is possible to derive a least squares estimate ofa as
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Here,j = 8 corresponds to movement from the Next target button, and the restrictionk ≠ j
avoids those situations in which the user strikes a button twice. Measuring the center-to-cen-
ter distance for each pair of buttons and plugging in the appropriate data results in a model of
between-button time that obeys the equation

s j k
D

S
jk

[ , ] log=






















+
+

127 2442

(9)

The value ofa = 127 is similar to other estimates (Card, Moran, & Newell, 1986). Thes[j, k]
terms can be used in equation (4) to predict path times.

Figure 6 plotss[j, k] values produced by the Fitts’s (1954) law model and values mea-
sured experimentally for every pair of buttons. For both the model and the data, the hills cor-
respond to movements that went from a button on one side of the display to the other side,
and the valleys correspond to movements between buttons on a common side of the display.
The eight data points on the far right correspond to movements involving the Next target
button, which is located slightly left of the center along the bottom of the display. Fitts’s law
does a good job capturing the basic rise and fall of between-button time and has an overall
correlation with the data ofr = 0.93. However, the model fails to capture much of the fine
structure at the peaks and valleys. The Fitts model tends to underestimate between-button
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time for neighboring buttons (bottom of a valley) by more than 100 msec. Likewise, the
Fitts model tends to overestimate between-button time for buttons on opposite sides of the
display and fails to match the scallop shape at the peaks. The scallop occurs as a result of
differences in movements that also includes a vertical component (longer time). The verti-
cal distances are small compared to the horizontal distances, so Fitts’s law does not properly
distinguish those movement times.

Determining whether Fitts’s (1954) law provides an adequate model of between-button
time depends on whether the details missed by Fitts’s law will have a significant impact on
the optimization process. For the current optimization approach, the 100-msec discrepan-
cies at the longest and shortest between-button times are likely too big to be tolerated. This
discrepancy may disappear or may be tolerable in other contexts. However, there is reason
to expect that Fitts’s law will not apply to all cases of MFD hierarchy search times. Fitts’s
law describes the time needed to quickly move from one position to another. Applying this
law to MFD searches assumes that the user physically moves a pointer or a finger from one
button to another. This may not always be the case. If the buttons are close enough, the user
may use one finger to push one button and another finger to push another button. Likewise,
the user may use two hands should the physical spacing of buttons allow it. Fitts’s law is un-
likely to apply in such cases because there is no movement between buttons. Despite these
limitations, for those situations in which Fitts’s law does apply, it provides an easy means to
model button movement times.
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FIGURE 6 The between-button time for every button pair as measured experimentally and as modeled by
Fitts’s (1954) law. Fitts’s law tends to underestimate the shortest times and overestimate the longest times.
The Fitts law model also fails to differentiate movements directly across the multifunction display from
oblique movements across the MFD. The graph shows these as smaller dips in the hills.



4.2.3. Learning and independence. The model assumes that the time taken to
move through a path of buttons toward a label can be broken down into independent factors
that are specific to the button path and to the label. This assumption can be tested. Rewriting
Equation 1 shows that, in the model, the label time obeys the equation

L(i) = T(i) – B(i) (10)

BothT(i) andB(i) were measured during the course of the experiment, so it is possible to
estimateL(i). If L(i) does not vary when the mapping of labels to button paths is changed to
the optimal mapping, then adding theL(i) values back to the button-path times should pro-
vide an accurate prediction of search time:

T(i)* = B(i)* + L(i) (11)

where the asterisks indicate values for the optimized condition. For the optimized mapping,
the predicted mean search time was 3.0 sec, which is longer than the 2.5-sec actual mean
search time. The most likely explanation for this discrepancy is that users of the optimized
mapping more easily learned the button sequence needed to reach a target label. For exam-
ple, remembering that a label is reached by pressing button 2 three times in rapid succession
is likely easier than remembering that a label is reached by pressing button 2, then button 6,
and then button 5. Such learning effects violate the assumed independence of button paths
and label times.

To compare recall times for different labels,L(i) was divided by the level of the label in
the hierarchy. This gives the average between-level time for each target label, which corre-
sponds roughly to the time spent searching for the correct labels along the target’s button
path. That learning plays a role can be seen in Figure 7, which compares the between-level
times for the random and optimized mappings as a function of the search frequency for a la-
bel. There are two important demonstrations of learning. First, between-level times are
shorter as label search frequency increases. This is likely due to improved recall of button
paths for those labels that are searched for more often. This finding is consistent with earlier
studies of learning in menu searches (Vandierendonck, Van Hoe, & De Soete, 1988) and is
unrelated to the independence issue. Second, the between-level time for the optimized map-
ping is substantially shorter than for the randomized mapping (M = 512 and 992 msec, re-
spectively). The difference between optimized and randomized mappings demonstrates that
the assumed independence between button-path times and label times is not an accurate de-
scription of MFD searches in the experiment.

The lack of independence between button-path times and label times prevents the model
from accurately predicting search time because Equation 11 is not valid. However, the lack
of independence may not prevent the system from finding an optimal mapping. In particu-
lar, the shape of the curves in Figure 7 are very similar, thereby indicating that the optimized
mapping simply makes it easier to learn the button path for every label in the target set. Be-
cause every target label is affected nearly equally, it is as ifL(i) for every term was sub-
tracted by a constant amount. Plugging that constant into Equation 2 shows that, again, the
optimal hierarchy is found by minimizing expected button-path times and Equation 3 again
applies. Of course, there is no guarantee that the change inL(i) will be constant for other sit-
uations, and if it is not, then Equation 3 must be modified to include theL(i) terms. The con-
stant change in between-level times demonstrated in Figure 7 also suggests that it may be
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possible to predict the way that button paths interact with labels. Further study is necessary
to explore this possibility.

This discussion has assumed that shorter than predicted search times are due to learning
effects. An alternative explanation is that participants made more errors in the random con-
dition than the optimized condition. After an error, the user needed to move back up a level
and then move to the correct button. The time to recognize the error and execute compensa-
tory movements was added into theT(i) times. If the optimized button paths had fewer er-
rors, theT(i)* times would be shorter than the model would predict, and this would account
for the observed changes inL(i). The software, unfortunately, did not keep track of error
data, so additional experiments will be needed to explore these effects.

5. DISCUSSION

One advantage of treating the mapping of labels to buttons as a cost minimization optimiza-
tion problem is that it can be easily extended to include other influences on the design pro-
cess. For example, instead of simply minimizing expected search time, a new cost function
could be introduced that sums a variety of individual cost functions:

C Ck k
k

n

=
=

∑ λ
1

(12)
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FIGURE 7 The average time needed to move between levels, after factoring out button-path time, as a
function of frequency of search. For both the random and optimal mappings, between-level time generally
decreased with label frequency, suggesting memory effects. The between-level times were smaller for the
optimal mapping, thereby rejecting the hypothesized independence between button-path and label times.



whereCk is a cost function andλk is a weight assigned by the designer. For example,
Francis and Reardon (1997) described cost functions for consistent placement of a label
in multiple places in a hierarchy to ensure that time critical functions are easily accessed,
keep related functions close to each other, and minimize the depth of the hierarchy. Other
efforts to optimize interface designs (Hwa et al., 1995; Kleiss, 1997; Roske-Hofstrand &
Paap, 1986; Sargent et al., 1997) can probably also be incorporated into this scheme by
recasting the problem as one of cost minimization. A cost could also include relevant data
from cognitive psychology on stimulus response compatibility (Proctor & Van Zandt,
1994). Likewise, if a designer wishes to impose special restrictions that derive from other
constraints (e.g., carry over design properties from an earlier MFD), it is easy to define a
cost function to impose that constraint. A designer can also impose hard constraints on
the optimization procedure and force it to optimize the remaining parts of the system sub-
ject to those constraints.

A challenge of introducing additional cost functions is to scale them properly so
that each cost function contributes to the final design appropriately. This can be done
by setting theλk weight of each cost appropriately. Determining the appropriate
weight requires knowledge of how the different cost terms affect usability of the de-
vice. As these influences have only been investigated in a piecemeal fashion, there re-
mains some substantial experimental work before the general method can be used to
its full ability.

Even without the elaboration, the current methodology offers substantial benefits. The
optimization approach was shown to generate a mapping of hierarchy labels to buttons that
reduced search time by 32%. This validates the basic approach. Although additional experi-
ments are needed to further explore the strong effects of learning and their interactions with
mapping type, the methodology proposed in this article promises to dramatically and easily
improve the design of MFD devices.
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