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Whenever binary information is transmitted over a "noisy" channel, part of the message can be lost or 
misinterpreted. By adding redundancy to the transmissions, it is possible to reduce the effect of noise. Re
dundancy is introduced by converting information into an established code, sending the encoded information, 
and then decoding the information at the receiving end. The parity check used by computer communication 
systems is an example of an error detecting code. Some communication environments, however, such as the 
distances between planetary spacecraft and receiving stations on Earth or critical military transmissions, 
require codes that can detect more than one error and in many cases correct the errors. 

Find a code which can account for a given amount of noise and is as efficient as possible is a difficult 
optimization problem. This paper uses the recently discovered optimization abilities of artificial neural 
networks (ANNs) to find good codes. 

I. CODING THEORY. Coding theory is a broad field of which only a small part is discussed in this
paper. (For an in depth look at coding theory, see van Lint 1982). For notational convenience, let B = {O, l} 
and let Bn be the set of all possible sequences of zeros and ones of length n. Each element of Bn may also 
be called an n-bit word. We define a metric on the set Bn . 

For x, y elements of Bn , we define their Hamming distance as 

H(x,y) := l{i : Xi'# Yi, 1 � i � n}I, 

where Xi represents the ith member of the sequence x and I * I represents cardinality. In other words, the 
Hamming distance (or just distance) between x and y is the number of places where their values differ in 
the sequences. For example, H(OlO, 111) = 2 because the words differ in two places. 

Hamming distance is used to precisely define a code. For some fixed n and d we define C C Bn to be a 
code of length n, distance d if for every pair of distinct elements x, y of C, 

H(x,y) 2>: d. 

The elements of C are called codewords. We refer to C as an (n, M, d) code, where M denotes the cardinality 
ofC. 

Codes are extremely important in information theory. As digital information is passed between computers 
through various media, noise can affect a signal. When this happens, a O is sometimes interpreted as a 1 and 
vice versa. Consequently, a word can be misread by the receiving computer. However, if both sender and 
receiver agree to use only the codewords in a code of distance d > 1, a single error in the transmission of a 
word can be detected and the computers can recognize that the word needs to be sent again. For d 2': 3, not 
only can errors be detected but if fewer than d - 1 errors occur, the codeword closest to the faulty received 
word can be safely recognized as the intended transmission. 

The most familiar code is the .parity check. This is an (n + 1, 2n, 2) code. It can detect the presence of an 
odd number of errors (namely one error) in the transmission of a word. To encode a given n-bit word x, we 
create an n + 1-bit word z by the inclusion of a designated parity bit p, given by 

p := (t + txi) mod 2,
1=1 

where f is zero or one, depending on convention. If f = 0, we say z has even parity, and if/= 1, z has odd 
parity. Both conventions are in frequent use. 

For some telecommunication applications we need a more robust code. Consider the following (7, 16, 3) 
code: 
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{ 0000011, 0001100, 0010110, 0011001,} R ·- 0100101, 0101010, 0110000, 0111111, . - 1000000, 1001111, 1010101, 1011010, .1100110, 1101001, 1110011, 1111100 
FRANCIS AND FULLER 

Because IRI = 16 the sender and receiver can agree on a unique word in R for each word in B4
• This code also has the nice property of symmetry; every word in R also has its complement in R. Not all codes are symmetric, and finding non-symmetric codes is usually more difficult than finding symmetric codes. A fundamental problem in coding theory is to maximize the size of C for given length n and distance 

d. For fixed n and d, a code C is said to be optimal if ICI � IDI where D is any other cod.e. The abovementioned code of length seven with sixteen words is one of several optimal codes. For codes of small n, it is fairly easy to find optimal codes, but for codes involving words of greater length it becomes increasingly difficult to pick optimal codes out of the large number of possible codes. As the length of words increases, so does the number of words because IBn I = 2n . Due to this exponential increase in the number of words, it becomes impractical to attempt to construct all possible codes and find the codes with the largest number of codewords. Due to the computational difficulty of the problem, most good codes are found through methods other than direct construction of codes; group theory, for example, has provided many insights into the formation of good codes. However, many cases have not yet yielded to study. Although the amount of computation required for a brute force attack on the problem is usually too great for a computer, it is possible to develop methods requiring much less computation that can find very good, although not necessarily optimal codes. The following section shows how a type of ANN can be used to find good codes for given length and distance. 
II. HOP FIELD NETWORKS. Artificial neural networks consist of many connected simple processorsor "neurons." Each neuron produces an output signal which it sends to many other neurons. One of the simplest networks ·consists of neurons which multiply the incoming signals by a factor and then sum the products. This summation is then tested against a threshold and based upon that test the neuron produces a single binary digit as output. If V; represents the output of neuron i and T;; represents the multiplyingterm for the signal from neurons j to neuron i, each neuron obeys the threshold function1 1 if I: T;; V; + Ii > ui#i 

V; := 0 if LT;; V; + l; s; U;, #i where l; is some input to neuron i from outside the network and Ui is the threshold for neuron i.
(1) 

Hopfield (1982) showed that a network of this type will always converge to a stable state whenever T;; = T;;and T;; = 0. To prove stable convergence, consider the following function: 
1E := -2 LLT;;V;V;- LliV; + LUiV;.

i¢j i i 
(2) 

Assuming a finite number of neurons, E can have only a finite number of possible values. If neurons are randomly chosen to be updated one at a time, it can be shown that any change in the output of a neuron will decrease E. In fact, the change of E due to the change in the output of any neuron V; is given by
!).E = - [LT;; V; + I; - l:{i] !). V;.#i (3) 

By the definition of a neuron's output in equation (1), !).V; is either 0, +1, or -1. If !).V; = -1, by (1) theterms in brackets in equation (3) must also be negative and hence !).E is negative. Likewise, if !). V; = + l, the terms in brackets are positive and again !).E is negative. Because E has a finite number of possible
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values, it is bounded and eventually it cannot decrease any further. If after some time !).E is always zero,equation (3) implies that !). V; = 0 for all neurons, so the network is in a stable state .To apply these ideas to coding theory we create 2n neurons, one for each word in Bn. We set the weights between neurons by the following rule: 
{ +1 if H(i,j) � d

T;; := -J �f 1!(i,_i) < d
0 If 2 = J, 

(4) 

where -J is a negative number and dis the desired minimum distance between codewords. Clearly, T;; = T;; and T;; = 0, so the proof of convergence applies. l; and U; both equal zero for every neuron in equation (1).
If the proper value of J is chosen, we can force the network to converge to a stable state where only neurons that represent codewords have outputs equal to one. If J is chosen to be greater than the cardinality of an optimal code, there cannot exist a stable state containing two words, not both part of the same code, which both have output one. Words which are both part of the same code support each other by adding positive values to the summation in (1). A word that is not part of the same code (i.e., is closer than d to an active word) receives a large negative addition in (1) and is less likely to have a total summation above threshold. Of course this subtraction goes both ways because T;; = T;;. The neurons can be thought of ascompeting for a position in a code by trying to keep active other neurons which are part of a common code, and trying to make inactive neurons which are not part of a common code. Networks of this type are called 
cooperative-competitive networks. .Although the cardinality of an optimal code is not always known, an upper limit is frequently available. Setting J equal to an upper limit of the code under investigation will still cause the network to converge to a code. However, there is never a guarantee that the network will converge to an optimal code. Although Ein equation (2) is minimized when the network converges to an optimal code, there are often other stable states (i.e., non-optimal codes). It is quite possible that the network will decrease E to a local minimumrather than a global minimum. In that case, the network will find a code that is not optimal. To aid the network's convergence to a global minimum we used simulated annealing as suggested byHinton and Sejnowski (1986). This approach replaces the threshold in equation (1) with a probability. The probability that neuron i will have an output of one is 1 

P(V; = 1) := 
[ '°' ] ' 1 + exp -(1/Q) L,;ti T;; V; (5) where Q > 0 is called the temperature of the network. By starting with a large value of Q and graduallyreducing the value, the network was much more successful at finding optimal codes than the original network. A network using simulated annealing was modeled on a PC and later on a VAX 11/780. We were able to find optimal codes for various distances up to word length ten. (The cardinalities of optimal codes are known for these lengths.) For example, to find the (8, 20, 3) code, which is optimal, we started with a temperature of six. Every time 256 neurons were checked, we decreased the temperature by using the function 

Q(t + 1) = { Q(t) - �Jl/Q(t) �f Q(t) � 1.0 (6) .95 Q(t) If Q(t) < 1.0There is a lot of guesswork when using ANNs, and this function is a mix of several ideas. As our experience with the network and its convergence rates developed, we continually modified this function into its present form. It is very likely that there are other methods of decreasing the temperature which would provide faster and better convergence. Using this function, the network found an (8, 20, 3) code after 35 iterations on some trials. It is important to note that during some trials the network found codes containing only 17, 18 or 19 words. Such codes are not optimal, but are stable states for the network. Networks designed to find codes of length greater than ten have not been well explored because of the substantial time required for the computer to finish its task. Faster computers could find good codes for longer lengths and the technique is well suited to parallel processing; however, we have yet to explore these other possibilities. 
III. CONCLUSION. The use of ANNs for solving optimization problems is a small but important partof neural network research. For an introduction to neural networks literature, the reader should investigateGrossberg (1988) and Rumelhart and McClelland (1986).
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Other problems can also be solved with neural networks. Blayne Carroll, a fellow student, was recently 
investigating intersecting hypergraphs. Given N people, he was interested in finding the largest set of teams 
consisting of k < N people subject to the following constraints: 

1) Every two teams must have at least M � k people in common.
2) No person may be on every team.

Blayne created an algorithm that worked well for M = l, but he had difficulties extending his algorithm
for some values of M. However, one of us (GF) demonstrated that an ANN could be created that finds 
teams for general M. This ANN is very similar to the coding theory network described in this paper. 

ANNs provide a flexible approach that can be advantageously applied to some problems. If standard 
methods are too slow, too complicated to implement, or if appropriate parallel hardware is available, ANNs 
may be worth considering. 

REFERENCES 

S. Grossberg, Neural Networks and Natural Intelligence, MIT Press, Cambridge, MA (1988).

G. Hinton & T. Sejnowski, Learning in Boltzman machines, Parallel Distributed Processing, MIT Press
(1986).

J .J. Hopfield, Neuronal networks and physical systems with emergent collective computational abilities, 
Proceedings of the National Academy of Sciences, 79, 2554-2558 (1982). 

J.J. Hopfield & D.W. Tank, "Neural" computation of decisions in optimization problems, Biological Cyber
netics, 52, 141-152 (1985). 

D.E. Rumelhart & J.L. McClelland, (Eds.) Parallel Distributed Processing (Vol. I), MIT Press, Cambridge,
MA (1986).

J. van Lint, Introduction to Coding Theory, New York: Springer-Verlag (1982).

Gregory Francis and Keith Fuller 
Butler University 

This paper was written under the direction of Professors Prem Sharma and James Fink. 

WHEN POLYNOMIAL RINGS ARE PRINCIPAL IDEAL RINGS 

Lillian J. Kinkade and Joyce K. Wagner 

An important theorem in the study of polynomial rings is: If F is a field, then F[X] is a principal ideal 
ring [1, Theorem 47.3]. We propose to determine the structure of R if R[X] is a principal ideal ring; in 
particular, we show that R[X] is a principal ideal ring if and only if R � R1 x R2 x · · · x Rn where each Ri
is a field. 

Much research has been devoted to determining when certain rings are principal ideal rings, and a nice 
treatment of this subject can be found in [2]; in particular, [2, Theorem 18.10] generalizes our main theorem. 

We now give definitions and notation that will be used throughout the paper. A ring is said to be 
Noetherian if every ideal is finitely generated. A primary ring is a ring which, for any ideal I, if ab E I, then 
a E I or bn E I for some n. A principal ideal ring is a ring in which all ideals can be generated by a single 
element. The radical of an ideal I is rad(!) = { b E R: bn E I for some n}. Note that rad(!) is an ideal of the 
ring. Finally, all rings in this paper are assumed to be commutative Noetherian rings with unity. 

The following proposition gives us an idea of the structure of R if R[X] is a principal ideal ring. 

PROPOSITION 1. If R is a primary ring and R[X] is a principal ideal ring, then R is a field. 
PROOF: Assume R is not a field. Then there must be some nonzero element r of R that is not a unit. 

Now consider the ideal (r, x) in R[X]. Since R[X] is a principal ideal ring, (r, x) = (p(x)) for some p(x) in 
R[X]. From this we have that r E (p(x)) implies r = q(x)p(x) for some q(x) E R[X]. Similarly, x = s(x)p(x) 
for some s(x) E R[X]. Performing the multiplication and setting the coefficients equal, we see that 

(1) r = qopo
(2) - 0 = sopo and
(3) 1 = SoP1 + PoS1

where the subscript i denotes the coefficient of xi . From (1), since r -:p 0, then p0 -:p 0. Since R is a  primary 
ring and from (2), we see that 

(4) So = 0

for some n E Z. Now using (3), we have 1 n = (s0p1 + p0s 1t. Expanding the right side by the binomial
theorem and ignoring coefficients, we have that the kth term is (s0p1)k(p0s1r-k. Since R is commutative, 
the kth term will cancel as long ask -:p O and k -:p n by (2). So we have 1 = (sop1 t +(posit. But the first 
term cancels by (4). So 

(5) 1 = (pos 1t-

Also, p(x) E (r, x), so p(x) = f(x)r+g(x)x. Therefore p0 =for.Substituting this into (5) gives 1 = (/ors1r 
which contradicts the fact that r is not a unit. Thus R must be a field. 

The next lemma shows that the homomorphic image of a principal ideal ring is a principal ideal ring. 

LEMMA 2. If R is a principal ideal ring and cp: R --+ S is an onto ring homomorphism, then S is a 
principal ideal ring. 

PROOF. Let R be a principal ideal ring and cp: R--+ San onto ring homomorphism. If I is an ideal of S, 
then cp-1(!) is an ideal of R. To see this, recall from group theory that cp-1 (I) is a subgroup of the additive
group of R. So let x E cp- 1(I) and a E R. Now cp(ax) = cp(a)cp(x). Since cp(x) E I, cp(a)cp(x) E I. Thus 
ax E cp-1 (I), so cp-1 (!) is an ideal of R. Since R is a principal ideal ring, cp- 1(!) = (r) for some r E R. If 
we can show that I= (cp(r)), then we shall have the desired result. (cp(r)) � I is obvious since cp(r) EI. For 
I � ( cp( r)), let x E I. Since cp is onto, there is a y E cp-1 (I) such that cp(y) = x. Since y E cp- 1 (I), y = br 
for some b ER. Thus x = cp(y) = cp(br) = cp(b)cp(r) E (cp(r)). So I� (cp(r)), and Sis a principal ideal ring. 

Our next major proposition will show how R can be broken into a product of primary rings. To do that, 
we need some preliminary results. 

59 

I 

I 
I 

. ,l 




