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An analysis of the reset of visual cortical circuits responsible for the binding or segmentation

of visual features into coherent visual forms yields a model that explains properties of visual

persistence. The reset mechanisms prevent massive smearing of visual percepts in response to rapidly moving

images. The model simulates relationships among psychophysical data showing inverse relations of persistence

to flash luminance and duration, greater persistence of illusory contours than real contours, a U-shaped

temporal function for persistence of illusory contours, a reduction of persistence due to adaptation with a

stimulus of like orientation, an increase of persistence due to adaptation with a stimulus of

perpendicular orientation, and an increase of persistence with spatial separation of a masking

stimulus. The model suggests that a combination of habituative, opponent, and endstopping mechanisms prevent

smearing and limit persistence. Earlier work with the model has analyzed data about boundary formation,

texture segregation, shape-from-shading, and figure-ground separation. Thus, several types of data support

each model mechanism and new predictions are made.
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1 Introduction

Humans and other animals form useful visual rep-
resentations of rapidly changing scenes. The visual
system rapidly resets the segmentations of changing
parts of a scene to prevent image smearing. This ar-
ticle explains how a neural network theory of early
visual processes proposed by Grossberg & Mingolla
(1985a,b, 1987) accounts for many of the data on vi-
sual persistence. The theory suggests that a key pro-
cess governing these data is the time taken to reset a
segmentation. We simulate reset dynamics that help
to force a rapid return of the network to a state unbi-
ased by prior segmentation in order to better process
incoming data. We explain how hysteresis in the seg-
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mentation network is a rate-limiting factor in visual
persistence, and show that properties of the hystere-
sis match key psychophysical data. Psychophysical
studies of visual persistence have revealed four key
sets of data, which are all explainable by the model:

• Persistence is inversely related to stimulus
duration and to stimulus luminance.

• Illusory contours persist much longer than
real contours andillusory contours do not
obey the inverse relationship between per-
sistence and stimulus duration characteris-
tic of luminance-based contours.

• When subjects adapt to a stimulus of the
same orientation as the test stimulus, per-
sistence of the test stimulus decreases; but
when subjects adapt to a stimulus of a per-
pendicular orientation to the test stimulus,
persistence of the test stimulus increases.

• The subsequent onset of a masking stim-
ulus greatly curtails persistence of a target
stimulus.

Before presenting the details of model mechanisms,
we briefly describe how the model addresses each of
these data sets.
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1.1 Inverse relation of persistence to

luminance and to stimulus dura-

tion

Figure 1a, taken from Bowen, Pola, & Matin (1974),
shows that, for each luminance curve, persistence is
inversely related to stimulus duration. Except for
very short stimulus durations, persistence is also in-
versely related to stimulus luminance. Similar results
have been found by many authors (see Coltheart,
1980; Breitmeyer, 1984 for reviews).

In the study of Bowen et al. (1974), subjects were
asked to match the perceived offset of a target stim-
ulus with the perceived onset of a probe stimulus.
The physical interstimulus interval between the tar-
get and mask stimuli provided a measure of the tar-
get’s persistence. Long & Gildea (1981) argued that
perceived offset is not a good measure of persistence
because some parts of the stimulus may continue to
persist beyond the perceived stimulus offset. Sakitt
& Long (1979) and Long & McCarthy (1982) showed
that when subjects were told to attend to any residual
trace of the stimulus, and not just perceived offset,
the duration of total persistence was directly related
to stimulus luminance. Measures of total persistence
have, in turn, been criticized as being the result of
afterimages or iconic memory (Coltheart, 1980; Bre-
itmeyer, 1984; DiLollo, 1984). Perceived offset and
total persistence are thus different features of the dy-
namic processing of a changing stimulus. In this pa-
per we model persistence data based upon perceived
offset, and we do not consider the properties of total
persistence until the conclusion. When we refer to
persistence we mean the time between physical offset
and perceived offset.

The inverse relationships between persistence and
stimulus duration and luminance imply that persis-
tence cannot be modeled as a simple decay of activity
of some neural stimulus representation. The initial
strength of such a representation at the moment of
stimulus offset would presumably increase with stim-
ulus duration or luminance, yielding a higher starting
point from which decay would begin, and thus longer
persistence. Figure 1b (solid lines) demonstrates that
persistence of signals in the model is inversely re-
lated to stimulus duration and luminance at all but
the shortest durations. The model achieves this close
match with the psychophysical data by generating an
active reset signal at stimulus offset which inhibits the
persisting signals of the stimulus (Grossberg, 1991).
We later quantitatively analyze how the strength of
the reset signal increases with stimulus duration and
luminance.
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Figure 1: (a) Persistence is inversely related to flash
luminance and flash duration. (Reprinted with per-
mission from Bowen et al. (1974).) (b) Computer
simulation of boundary signal persistence as a func-
tion of flash duration and flash luminance. Dashed
lines simulate model performance without habitua-
tive transmitter gates that form the basis of the reset
mechanism required to explain data on persistence.
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1.2 Paradoxical increase of persis-

tence of illusory contours

Figure 2a (taken from Meyer & Ming, 1988) shows
that illusory contours have different persistence prop-
erties than contours defined by luminance edges. Not
only do illusory contours persist substantially longer
than real contours, but persistence of an illusory con-
tour peaks at an intermediate stimulus duration. In
contrast, the persistence of a stimulus defined by lu-
minance edges continually decreases as stimulus du-
ration increases. These data place strong constraints
on the source of signals used to reset a changing vi-
sual segmentation. In our model, only changes in
luminance-derived edges generate reset signals. Thus,
figural boundaries that include illusory contours per-
sist longer than contours of corresponding length that
are defined entirely by luminance edges, because the
former contain luminance edges as a smaller propor-
tion of the total contour. Figure 2b shows that the
model’s responses to illusory contours persist longer
than real contours. Persistence of illusory contours in
the model is not inversely related to stimulus dura-
tion at short durations because illusory contours take
some time to fully develop (Reynolds, 1981) and, if
not fully developed, they can more quickly disappear.

1.3 Effects of orientation-specific

adaptation

Figure 3 (dark bars) shows that adaptation to stimuli
can also influence persistence duration (Meyer, Law-
son, & Cohen, 1975). This figure demonstrates that
when subjects adapted to a stimulus of the same ori-
entation as the test stimulus, persistence of the test
stimulus decreased; but when subjects adapted to a
stimulus of a perpendicular orientation to the test
stimulus, persistence of the test stimulus increased.
In each case, persistence could be changed by as much
as ± 20 milliseconds. These data provide two clues
about the hypothesized reset signal. First, it sug-
gests that adaptation or habituation drives the reset
signal. Second, it indicates that opponent interac-
tions between pathways sensitive to opposite orien-
tations regulate the inhibition that forms the reset
signal. Below we explain how a neural circuit consis-
tent with these observations can generate a transient
response at stimulus offset that acts as a reset signal.
Figure 3 (light bars) shows that adaptation influences
persistence of signals in the model in the same way
revealed by psychophysical studies.

1.4 Shortening of persistence by a

spatially proximal mask

Figure 4a from Farrell, Pavel, & Sperling (1990)
shows that the influence of a mask on the persis-
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Figure 2: (a) Illusory contours persist longer than
real contours. Persistence of illusory contours is
maximal at an intermediate duration of the stimu-
lus. (Reprinted with permission from Meyer & Ming
(1988).) (b) Computer simulation of real and illusory
boundary contour persistence as a function of flash
duration. The boundaries produced in response to
the illusory contours persist longer than the bound-
aries produced in response to the real contours. Per-
sistence of illusory contours peaks at an intermediate
stimulus duration, as in the data. The solid lines con-
nect the points sampled in the data of Meyer & Ming
(1988).
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Figure 3: (Black bars) Change in persistence depend-
ing on whether the adaptation stimulus had the same
or orthogonal orientation as the test grating. (Plot-
ted from data in Meyer et al. (1975).) (Gray bars)
Computer simulation of boundary signal persistence
depending on whether the adaptation stimulus had
the same or orthogonal orientation as the test grat-
ing.

tence of a target depends on the spatial distance be-
tween the stimuli, with closer masks decreasing the
persistence of the target. Other studies (Farrell, 1984;
DiLollo & Hogben, 1987) have found similar results.
Most researchers interpret this result as being due to
spatial inhibition, which prevents smearing of moving
stimuli. The model contains this type of inhibition
and Figure 4b (solid line) demonstrates that the per-
sistence of signals in the model correlates well with
the psychophysical data.

The model that we use to simulate persistence
data was originally developed to explain many other
types of psychophysical and neural data, such as data
about boundary completion, illusory contour forma-
tion, texture segregation, shape-from-shading, 3-D
figure-ground pop-out, brightness perception, and
filling-in of 3-D surface percepts (Grossberg, 1987a,
1987b, 1993; Grossberg & Mingolla, 1985a, 1985b,
1987; Grossberg & Todorović, 1988). Model mecha-
nisms have also been derived from several basic prin-
ciples about visual information processing (Gross-
berg, Mingolla, & Todorović, 1989). The model’s
success in simulating persistence data lends greater
weight to the physical reality of these mechanisms.
Put another way, the fact that the model can ex-
plain persistence data without a change of mechanism
illustrates its predictive power while linking persis-
tence data to other types of perceptual data that have
been explained by the same mechanisms. Grossberg

(1993) and Grossberg & Mingolla (1993) summarize
a number of experiments that have successfully tested
model mechanisms since they were first proposed.

The model proposes two sources of inhibition that
reset visual segmentations of stimuli. Upon stimu-
lus offset, interactions of habituation and opponent
processing across units tuned to perpendicular ori-
entations generate a reset signal. Spatial inhibition
among units of like orientational tuning provides the
other inhibitory signal. Other researchers have sug-
gested using a reset signal to control persistence (Bre-
itmeyer, 1984; Öğmen, 1993), but they did not rec-
ognize the importance of habituation and opponent
processing, or the relation of these properties to the
generation and reset of illusory contours. DiLollo &
Hogben (1987) and Farrell et al. (1990) recognized
the role of spatial inhibition in accounting for the
data described in Figure 4a, but they did not imple-
ment the inhibition in a specific architecture capable
of explaining the properties of visual persistence.

Simulations of the model generated Figures 1b, 2b,
3, and 4b with a single set of parameters (except
where the model is intentionally “dissected” for anal-
ysis). All the equations and parameters governing the
model behavior are described in the Appendix. These
simulations demonstrate the model’s competence to
explain qualitative relationships between persistence
and various stimulus qualities. The simulations do
not in every case provide a quantitative match with
the psychophysical data. Why this is so is discussed
in the concluding remarks.

2 Feature Binding as a Source

of Visual Persistence

In this section we describe how the Boundary Con-
tour System (BCS) (Grossberg & Mingolla, 1985a,b,
1987) addresses the psychophysical properties of vi-
sual persistence. Figure 5 schematizes the model,
with each cell’s icon drawn to indicate its receptive
field structure.

We base our first observation on the adaptation
studies of Meyer et al. (1975), which show that
persistence can be specifically modified according to
stimulus orientation. These data are explained us-
ing model cells that locate and represent oriented
boundaries. Thus, although cells in the first level
contain unoriented center-surround receptive fields,
the remaining cells in the network respond best to
a boundary of a specific orientation. In agreement
with neurophysiological data on receptive field prop-
erties in visual cortex (Hubel & Wiesel, 1965), the
first level of oriented cells in the BCS correspond to
cortical simple cells. These cells respond to oriented
luminance edges of a specific polarity centered at a
particular point on the retina. Cells in the next level,
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Figure 4: (a) The persistence of thin lines moving
in stroboscopic motion depends on the spatial sep-
aration between successive images. (Reprinted with
permission from Farrell et al. (1990).) (b) Computer
simulation of boundary signal persistence as a func-
tion of the spatial separation between contours of a
target and a mask. Dashed line simulates model per-
formance without the spatial competition. Note that
the size of our simulation plane did not permit testing
spatial separations larger than shown.
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Figure 5: Boundary Contour System with embedded
gated dipoles. See text for details.

corresponding to complex cells in visual cortex, re-
ceive rectified inputs from like-oriented simple cells
of each polarity. Model complex cells thus respond
to an oriented luminance edge of either polarity.

The orientation-specific habituation identified by
Meyer et al. (1975) is modeled by a habituative trans-
mitter gate (Grossberg, 1972) placed between each
complex cell and its corresponding cell in the next
higher level. Figure 5 codes this habituative trans-
mitter gate as a rectangle between the pathways con-
necting the levels. Whenever a signal passes through
this gate, the supply of transmitter is inactivated in
proportion to the strength of the signal. Upon offset
of the signal, the dynamics of the transmitter gate
act to restore the transmitter to its resting level. The
dynamic changes in the gates occur at a slower time
scale than the activities of neurons, so that a trans-
mitter gate may remain habituated for some time be-
yond stimulus offset.

Embedded along these pathways is one component
of the spatial inhibition implied in Figure 4a. This in-
hibition occurs from complex cells to the next level of
hypercomplex cells. It occurs among hypercomplex
cells that are sensitive to edges of the same orienta-
tion and nearby spatial positions, and the strength of
inhibition falls off with distance. Grossberg & Min-
golla (1985a,b) call this process the first competitive

stage. This competition occurs across positions in the
direction of preferred orientational tuning (endstop-
ping) as well as across positions lateral to the pre-
ferred direction. Activities from the first competitive
stage feed into a process of cross-orientation inhibi-
tion at each position called the second competitive

stage, which partially accounts for the opponent pro-
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cessing implied by the results of Meyer et al. (1975)
in Figure 3.

Signals surviving the competitive stages input to
cooperative bipole cells that are sensitive to more
global properties of the configuration of image con-
trasts. Figure 5, for example, shows a horizontally
tuned bipole cell, which receives excitatory inputs
from a horizontal row of horizontally tuned cells and
inhibitory inputs from vertically tuned cells at the
same locations. This orientation-specific inhibition
helps to explain the orientation-specific data of Meyer
et al. (1975) in Figure 3. Grossberg & Mingolla
(1985b) showed that this inhibition provides the net-
work with a property of spatial impenetrability, which
prevents boundary linkings from forming across inter-
vening boundaries of roughly perpendicular orienta-
tion. Every bipole cell has two independent lobes to
its receptive field, and each lobe must receive a suf-
ficient amount of excitatory input from the second
competitive stage for the bipole cell to generate a re-
sponse. A bipole cell triggers a response only if its
receptive fields are each stimulated by one or more
boundary components. For example, a bipole cell
whose receptive field center is at a corner of a bound-
ary cannot generate a response because the contour
stimulates only one side of its receptive field. On the
other hand, a bipole cell centered between two illu-
sory contour inducers as in, say, a Kanizsa square,
will generate a bipole response if the inputs are suf-
ficiently strong. In this fashion, parallel arrays of
bipole cells can generate an illusory contour. Von der
Heydt, Peterhans, & Baumgartner (1984) have found
evidence supporting the existence of bipole cells in
area V2 of monkey cortex.

Bipole-to-hypercomplex feedback carries out a spa-

tial sharpening process similar to the first competitive
stage. Here, each bipole cell feeds back on-center, off-
surround signals to hypercomplex cells of the same
orientation sensitivity. Spatial sharpening is another
part of the model that correlates with the spatial in-
hibition indicated in Figure 4a.

The positive feedback from the bipole cells to lower
level hypercomplex cells provides the rate-limiting
source of persistence in the model because the ac-
tivities generated by the feedback from one bipole
cell can excite parallel arrays of other bipole cells,
which in turn feed back signals that can excite the
original bipole cell, as indicated in Figure 6a. A self-
sustaining feedback loop is generated by the cooper-
ative interactions of the pathways marked by heavy
lines. Thus, within the model, persistence is due the
positive feedback interactions that choose a coherent
boundary segmentation from among many possible
groupings, and inhibit potential groupings that are
weaker. This positive feedback loop causes hysteresis
that is controlled by other model mechanisms.

For example, as indicated in Figure 6b, the end of

(a)

(b)

(c)

Figure 6: (a) Darker lines mark pathways of a closed
feedback loop. A bipole cell response can excite an
additional bipole cell. The response of that bipole
cell can, in turn, excite the original bipole cell. (b)
A bipole cell centered above the end of a contour is
outside the feedback loop because it receives inputs
only on one side of its receptive field. As a result,
the boundary signal at that location passively decays
away at stimulus offset. (c) After the boundary signal
at this location decays away, it exposes a new contour
end, and another bipole cell drops out of the feedback
loop.
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a surface contour does not support these feedback in-
teractions. In this figure the leftmost boundary signal
of Figure 6a has been deleted. Without this bound-
ary signal, the left bipole cell does not fire because
only one side of its receptive field receives stimulation.
Upon stimulus offset, the effect of this organization is
that, even without an active reset signal, the bound-
ary signal at the end of a contour passively decays
away and exposes a new contour end (as in Figures 6a
→ b). At this new contour end, the process repeats
itself for another bipole cell and so on from the ends
of the surface contour inward toward the middle of
the contour (as in Figures 6b → c). It is this in-
ward erosion of boundary signals that we correlate
with the persisting visual percept beyond stimulus
offset. In the simulations described below, we show
that, without an active reset signal, this passive ero-
sion is insufficient to model the psychophysical data
on persistence.

Figure 7 summarizes a simulation of boundary sig-
nal erosion. Figure 7a shows the stimulus presented
to the system, a bright square on a dark background.
Figures 7b-d show the boundary signal response to
the luminance edges of the stimulus at successive
points in time beyond stimulus offset. The figures
show the slow erosion of boundary signals from the
corners of the stimulus to the middles of the contours.
Figure 8 shows the strength of the horizontal bound-
ary signals along the lower edge of the square as they
vary over time beyond stimulus offset. The plot also
demonstrates the erosion of boundary signals coding
this edge.

3 Reset Signals and Gated

Dipoles

We now describe how the model generates reset sig-
nals upon stimulus offset. Figure 9 shows a subset
of the cells from Figure 5. Shown are separate path-
ways sensitive to the same position in visual space but
perpendicular orientations. These pathways compete
through the second competitive stage, as described
above. Feeding this competition are inputs gated
by habituative transmitters. In addition to signals
from external stimuli, each input pathway receives a
tonic source of activity, which establishes a non-zero
baseline of activity that energizes the off-response
which occurs after the stimulus terminates. All out-
put signals are rectified. This combination of rec-
tification, opponent competition, habituative trans-
mitter gates, and tonic input produces what Gross-
berg (1972) called a gated dipole circuit. At the off-
set of stimulation, a gated dipole circuit generates a
transient rebound of activity in the previously non-
stimulated pathway.

The time plot next to each cell or gate describes

(a) (b)

(c) (d)

Figure 7: (a) Stimulus input to the system, a bright
square on a dark background. (b) Boundary response
to the square shortly after the input returns to the
background level. (c) Boundary signals start to erode
from the corners of the square toward the middle of
the contours. (d) Boundary erosion is almost com-
plete.
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Figure 8: Time plot of boundary signal activities at a
cross-section of Figure 7 (lower horizontal contour).
The signals drop markedly upon stimulus offset as the
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maintain the boundaries for a substantial length of
time, but the boundaries erode away from the ends
toward the middle of the contour.
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Figure 9: At stimulus offset, a gated dipole circuit
produces a transient rebound of activity in the non-
stimulated opponent pathway.

the dynamics of this circuit. In the case shown, the
sharp increase and then decrease of the time plot at
the lower right of Figure 9 indicates that an exter-
nal input stimulates the horizontal pathway. In re-
sponse to the stronger signal being transmitted to
the next level, the amount of transmitter in the gate
inactivates during stimulation and then rises back to-
ward the baseline level upon stimulus offset. Notice
that the inactivation and reactivation of transmitter
occur more slowly than changes in the activities of
the neural cells. Each slowly habituating transmitter
multiplies, or gates, the more rapidly varying signal
in its pathway, thereby yielding net overshoots and
undershoots at input onset and offset, respectively.
During stimulation, the horizontal channel wins the
opponent competition against the vertical channel as
indicated in the top right time plot. However, upon
offset of the stimulation to the horizontal channel,
the input signal returns to the baseline level but the
horizontal transmitter gate remains habituated below
its baseline value. As a result, shortly after stimulus
offset, the gated tonic input in the horizontal channel
has a net signal below the baseline level. Meanwhile,
the vertical pathway maintains the baseline response
at all cells and gates before the opponent competition.
Thus, when the horizontal channel is below the base-
line activity, after stimulus offset, the vertical channel
wins the opponent competition and produces a re-
bound of activity as shown in the top left time plot.
As the horizontal transmitter gate recovers from its
habituated state, the rebound signal in the vertical
channel weakens and finally disappears.

Figure 10 shows how this rebound of activity acts

as a reset signal in the full BCS architecture. Fig-
ure 10a schematizes how inputs in a horizontal path-
way excite a horizontal bipole cell. As describe above,
these horizontal bipole cells can generate a hystere-
sis that corresponds to persistence. Due to the in-
teractions of the gated dipole circuit, offset of the
horizontal input generates a rebound of activity in
the vertical pathway, which, as Figure 10b demon-
strates, inhibits the horizontal bipole cell. This in-
hibition greatly speeds up the erosion of boundary
signals and decreases persistence. Note that, apart
from its crucial role in explaining persistence data,
the inhibition of bipole cells by offset signals from
perpendicularly oriented pathways of the gated dipole
circuit has been shown to play an equally crucial role
in preventing unwanted boundary groupings across
intervening surfaces (spatial impenetrability).

The inverse relationships between persistence and
stimulus duration and luminance, as shown in Fig-
ure 1a, follow from the properties of the gated dipole.
The longer the stimulus duration, or the stronger
(more luminous) the input to a gated dipole, the
more habituated becomes the transmitter gates and,
thus, the stronger becomes the reset signals. The
significance of the strength of the reset signals is ev-
ident in Figure 1b, which shows that persistence of
signals in the model is inversely related to stimulus
duration and luminance, except at very short stimu-
lus durations. At short stimulus durations, there is
only a very weak reset signal generated by the gated
dipoles. However, because the stimulus presentation
is so brief, the BCS does not establish a strong hys-
teresis in the feedback loop. Indeed, because stimuli
of a greater duration or a higher luminance create
stronger boundary signals and can more quickly es-
tablish strong activities in the feedback loop, at the
shortest stimulus durations persistence is directly re-
lated to stimulus duration and luminance. Haber &
Standing (1970) reported that persistence increases
with stimulus duration when the stimuli are briefer
than 20 milliseconds. At longer stimulus durations,
the gated dipoles begin to generate stronger reset
signals, which more quickly remove the persisting
boundary signals in the feedback loop. Thus, the
inverse relationships between persistence and lumi-
nance and duration occur when a strong hysteresis
has been established in the BCS and when the gated
dipole circuits produce strong reset signals.

To emphasize the role of the gated dipole circuit
and its reset signal, we re-ran simulations for two
luminance values and several different stimulus dura-
tions but modified one parameter so that the trans-
mitter gates did not habituate. The dotted lines in
Figure 1b show that without the transmitter habitu-
ation, persistence increases, or does not change, with
stimulus duration. Similarly, persistence increases
with stimulus luminance without the gated dipole cir-
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(a)

(b)

Figure 10: (a) A horizontal input excites a horizon-
tal bipole cell, which supports persistence. (b) Upon
offset of the horizontal input, a rebound of activity
in the vertical pathway inhibits the horizontal bipole
cell. This inhibition resets the hysteresis of the feed-
back loop and reduces persistence.

cuit; thus, it is the behavior of habituative transmit-
ters in the gated dipole circuit that explains the data
of Bowen et al. (1974) within the BCS model.

Because the habituative transmitters of the gated
dipole circuit are located outside the feedback loop of
the BCS, only the offsets of luminance-derived edges
generate reset signals. Therefore, only the reset sig-
nals generated by illusory contour inducers inhibit
the persisting illusory contours. Inducers of illusory
contours have few luminance edges and so, at stim-
ulus offset, generate fewer reset signals than bound-
aries defined entirely by real contours. With fewer
reset signals available to break the hysteresis of the
feedback loop, illusory boundaries persist longer than
real boundaries. We show the results of simulations
of these properties in Figure 2b. The luminous-based
stimulus for these simulations was an outline square,
while the illusory contour inducers were L-shaped
stimuli at the corners of a square. Our choice of in-
ducer forms was limited by computational resources
as explained in detail in the Appendix. This choice
suffices to illustrate the dynamical properties of con-
tours that are formed at positions without luminance
contrast. Other research concerning the BCS has
more fully analyzed the relationships between bound-
ary signals and perceived illusory contours through
computer simulation (Gove, Grossberg, & Mingolla,
1993) and psychophysical experimentation (Lesher &
Mingolla, 1993). Grossberg & Mingolla (1985a) also
analyzed why some inducers produced stronger illu-
sory contours than others.

Because luminance edges define only a small part
of an illusory contour, the boundary representation
takes longer to become strongly established than
the boundary representation of the outline square.
Therefore, illusory stimuli of short duration do not
generate strong hysteresis and can more quickly erode
at stimulus offset. Stimuli of an intermediate dura-
tion generate strong hysteresis, but do not produce
strong reset signals at offset. Thus, these stimuli
persist longest. Stimuli of long duration generate a
strong hysteresis, but they also generate stronger re-
set signals, which shorten persistence. Thus, over the
same range of stimulus durations that show an inverse
relationship with persistence for the outline square,
persistence of boundary signals for an illusory contour
is not inversely related to stimulus duration at short
durations, but peaks at some intermediate value, as
shown in Figure 2b. The darker lines in Figure 2b
connect simulation data points of the stimulus dura-
tions sampled in the psychophysical studies of Meyer
& Ming (1988). A comparison of these curves with
the data in Figure 2a shows that they are very simi-
lar in shape, although the absolute persistence values
are different.

Finally, because the opponent processing and ha-
bituative pathways are orientation-specific, the model
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explains the adaptation results of Meyer et al. (1975)
shown in Figure 3. Within the model, adaptation to,
say, a horizontal stimulus habituates the transmitter
in horizontal pathways but leaves the vertical path-
ways unadapted. If one then tests persistence of a
horizontal stimulus, the horizontal pathways further
habituate transmitter during the test presentation.
The stronger than usual habituation of the horizontal
pathways means that, at stimulus offset, the reset sig-
nals will be stronger than usual and persistence will
decrease. On the other hand, if one tests persistence
of a vertical stimulus, then both oriented pathways
become habituated: the horizontal pathways from
the prior adaptation and the vertical pathway from
the habituation due to the target presentation. As
a result of the opponent competition between these
habituated signals (Figure 9), the reset signals gen-
erated at offset of the vertical test stimulus will be
weaker than usual and persistence will increase.

So far we have accomplished two major goals.
First, we explained how interactions of a tonic input,
habituative transmitter gates, opponent processing,
and rectified output signals in a gated dipole circuit
generate a reset signal upon offset of an oriented lu-
minance edge. Second, we showed that the proper-
ties of this reset signal at the second competitive and
bipole stages of the model account for the inverse
relationships between persistence and stimulus lumi-
nance and duration (Bowen et al., 1974), the pro-
longed non-monotonic persistence properties of illu-
sory contours (Meyer & Ming, 1988), and the oppo-
site influences on persistence of orientation-specific
adaptation (Meyer et al., 1975).

It remains to show that the spatial inhibition,
or endstopping process, within the first competitive
stage of the model can account for the decrease in
persistence shown in Figure 4a. The solid line in Fig-
ure 4b demonstrates that the persistence of boundary
signals does depend on the separation between target
and mask stimuli. For comparison, the dashed line
shows the persistence of boundary signals when we
removed the oriented spatial competition of the first
competitive stage from the model (setting one pa-
rameter equal to zero). The second source of spatial
inhibition, in the feedback pathway of the bipole cells,
remains intact. In the current simulations it is of a
smaller range than the interactions of the first com-
petitive stage. The dashed line in Figure 4b shows
that without the spatial competition there are no
changes in persistence of the target stimulus until the
target and mask boundaries are within the range of
the inhibition in the feedback pathway. Thus, the
spatial competition accounts for the ability of the
masking stimulus to reduce persistence of the target
(Farrell et al., 1990).

4 Neurophysiological

Correlates and Predictions

Grossberg (1987a) reviews neural analogs of all stages
of the present model in visual cortex. In particular,
von der Heydt et al. (1984) found analogs of bipole
cells in area V2 of monkey visual cortex, which Cohen
& Grossberg (1984), Grossberg (1984), and Gross-
berg & Mingolla (1985a) had modelled before these
data were published. It may be possible to use ad-
ditional neurophysiological studies to verify the dy-
namic properties of these cells. For example, it should
be possible to observe the inward erosion of bound-
ary signals by observing a single bipole cell in visual
cortex. After finding the center of the bipole cell’s
receptive field, one could run a series of experiments
varying the position of luminance edges relative to
the center of the cell’s receptive field. Because the
model predicts that boundary signals erode from the
contour ends, the cell should show its greatest per-
sisting response when its receptive field is centered on
the contour and should show less persistence as the
experimenter shifts the contour center to one side or
the other of the receptive field center. Note that this
prediction follows despite another prediction, derived
from an analysis of the BCS in response to static
stimuli, that before stimulus offset the amplitude of
activity should be nearly identical for bipole cells all
along the contour, regardless of the cell’s distance
from inducers before reset occurs. Properties such
as the inverse relationships between persistence and
stimulus duration and luminance, greater persistence
for illusory than real contours, the effects of adapta-
tion, and the influence of a masking stimulus should
also be observable in an investigation of these cells.

Likewise, the ability of masking stimuli to reduce
persistence of the target should be measurable at a
suitable population of hypercomplex cells. Other hy-
percomplex cells should exhibit habituative gating of
their responses, as well as opponent rebounds to off-
set of stimuli that are oriented perpendicular to their
receptive fields. The firing of these rebounding hyper-
complex cells should correlate with diminished persis-
tence in target bipole cells that are tuned to a per-
pendicular orientation.

Lesher & Mingolla (1993) have tested the BCS
model through psychophysical experiments on the in-
duction of illusory contours in a Kanizsa square us-
ing variable numbers of line ends that are perpen-
dicular to the illusory contour. They found that an
inverted U function relates illusory contour clarity to
the number of line end inducers. The BCS explains
the inverted U as follows. More line end inducers at
first produce more cell activations at hypercomplex
cells of the second competitive stage whose receptive
fields are centered at and perpendicular to the line
ends. These responses are called end cuts (Grossberg
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& Mingolla, 1985b). They are due to an interaction
between the first and second competitive stages. The
first competitive stage inhibits those hypercomplex
cells at a line end whose orientational preference is
parallel to the line. These inhibited cells disinhibit
(via the second competitive stage) hypercomplex cells
at the line end whose orientational preference is per-
pendicular to the line (see Figure 5). These greater
numbers of end cuts, in turn, colinearly cooperate to
more strongly activate the bipole cells that generate
the illusory contour.

As more line inducers are used, however, they get
closer together. They then inhibit each others’ target
hypercomplex cells via lateral inhibitory signals from
the first competitive stage. Their net responses are
hereby weakened by lateral inhibition, as are their
end cuts and their illusory contours. Lesher & Min-
golla (1993) noted that other models of illusory con-
tour formation cannot explain this inverted U effect.

The BCS model suggests that an inverted U func-
tion may also relate illusory contour persistence to
the number of line end inducers under these exper-
imental conditions, since weaker bipole cell activa-
tions should erode more quickly after stimulus offset
and since a greater number of reset signals would be
generated. That is, as the spatial density of line in-
ducers increases beyond the point where illusory con-
tour clarity reverses, then illusory contour persistence
should also reverse in response to line inducers that
are on for a fixed amount of time. Stimuli in the rising
portion of the Lesher & Mingolla (1993) study pro-
vide both stronger bipole cell activity and stronger
reset signals, and so present a more ambiguous case.
This type of experiment would probe the interactions
between first and second competitive stages, as well
as between the spatial and temporal properties of
emergent segmentation.

Grossberg (1987a, Section 30) linked properties of
the BCS simple, complex, and hypercomplex cells to
experimentally reported properties of spatial localiza-
tion and hyperacuity. Badcock & Westheimer (1985a,
1985b) used flanking lines to influence the perceived
location of a test line. They varied the position of
the flank with respect to the test line as well as the
direction-of-contrast of flank and test lines with re-
spect to the background. They found that two sep-
arate underlying mechanisms were needed to explain
their data: a mechanism concerned with the lumi-
nance distribution within a restricted region, and a
mechanism reflecting interactions between features.
Within the central zone defined by the first mecha-
nism, sensitivity to direction-of-contrast was found,
as would be expected within an individual receptive
field. On the other hand, a flank within the surround
region always caused a repulsion which is indepen-
dent of direction-of-contrast. Thus “when flanks are
close to a target line, it is pulled toward the flank

for a positive flank contrast but they push each other
apart if the flank has a negative contrast. A flank
in the surround region always causes repulsion under
the conditions presented” (p. 1263). To further test
independence of direction-of-contrast due to the sur-
round, they also found that “the effect of a bright
flank on one side can be cancelled by a dark flank
on the other. Within the central zone this procedure
produces a substantial shift of the mean of a posi-
tive contrast target line towards the positive contrast
flank” (p. 1266).

Badcock & Westheimer (1985a) noted that the av-
erage of luminance within the central zone is sensitive
to amount-of-contrast and direction-of-contrast in a
way that is consistent with a Difference-of-Gaussian
model. Such a computation also occurs at the elon-
gated receptive fields, or input masks, of the BCS
(Figure 5). Pairs of simple cells with like positions
and orientations but opposite directions-of-contrast
then add their rectified outputs at complex cells
which are, as a consequence, insensitive to direction-
of-contrast (Figure 5). Such cells provide the in-
puts to the first competitive stage. The oriented
short-range lateral inhibition at the first competi-
tive stage is thus insensitive to direction-of-contrast,
has a broader spatial range than the central zone,
and, being inhibitory, would always cause repulsion –
all properties of the Badcock & Westheimer (1985a)
data. In summary, all the main effects in these data
mirror properties of the circuit in Figure 5.

In further tests of the existence and properties of
these distinct mechanisms, Badcock & Westheimer
(1985b, p. 3) noted that “in the surround zone the
amount of repulsion obtained was not influenced by
vertical separation of the flank halves, even when they
were several minutes higher (or lower) than the target
line. In the central zone attraction was only obtained
when the vertical separation was small enough to pro-
vide some overlap of lines in the horizontal direction.”
These data further support the idea that the central
zone consists of individual receptive fields, whereas
the surround zone is due to interactions across recep-
tive fields which are first processed to be independent
of direction-of-contrast, as in Figure 5. In our com-
puter simulations of boundary completion and seg-
mentation (Grossberg & Mingolla, 1985a, 1985b), it
was assumed that the lateral inhibition within the
first competitive stage is not restricted to any pre-
ferred orientation, as is also true of the surround re-
pulsion effect in the Badcock & Westheimer (1985b)
data.

This theoretically predicted correlation between
properties of hyperacuity, persistence, and illusory
contour formation presents an opportunity to design
new types of psychophysical experiments with which
to further test the model. Other new experimental
opportunities are summarized in Grossberg (1993).
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Some of these are now being explored in our labora-
tory.

5 Related Findings and Con-

cluding Remarks

Because the equations presented in the Appendix are
for a “single-scale” BCS, they cannot explain find-
ings by Meyer & Maguire (1981) that the persis-
tence of a grating percept increases with spatial fre-
quency. However, the multiple scale BCS interactions
described in Grossberg (1993) can account for this
finding without affecting the explanations described
in this paper. With multiple scales of oriented filters,
a grating of a low spatial frequency excites both large
and small filters, whereas a grating of a high spatial
frequency excites only small scaled filters. The net
result of this skewed excitation distribution across
scales is that the low spatial frequency grating creates
more reset signals than the high spatial frequency
grating. All activated filters of similar orientational
and disparity sensitivity at each position input to the
same set of bipole cells. As in the case of real ver-
sus illusory contours, more reset signals imply less
persistence.

The model also suggests why different experimen-
tal methods find different properties of persistence
(Sakitt & Long, 1979). The results in this paper
have correlated the disappearance of boundary sig-
nals with the perceived offset of the stimulus. How-
ever, due to the slow time constants of the habitua-
tion in the gated dipole circuit, reset signals gener-
ated at stimulus offset may persist beyond the off-
set of the boundary signals. Perceptual awareness of
these reset signals may be used by subjects when the
experimental instructions tell them to observe any
residual trace of the stimulus, as in the studies of
Sakitt & Long (1979). In particular, stronger lumi-
nance implies greater habituation, which implies a
greater length of time for the rebounding channels
of the gated dipole to return to baseline. Thus, the
persistence of the reset signals may be directly re-
lated to stimulus luminance, in agreement with the
psychophysical studies of total persistence (Sakitt &
Long, 1979; Nisly & Wasserman, 1989).

In reading the Appendix, note that a single set of
parameters was used to simulate all the properties
of visual persistence. While modifying the parame-
ters may change the quantitative values given in Fig-
ures 1, 2, 3, and 4, the relevant functional properties
expressed by the curves remain the same. Specifi-
cally, regardless of the specific choice of parameters
(excluding cases where boundary signals or reset sig-
nals are not created at all), persistence of signals in
the model is inversely related to stimulus luminance
and duration, illusory contours persist longer than

real contours, orientation-specific adaptation has op-
posite influences on persistence, and a spatial mask-
ing stimulus inhibits target persistence. The relation-
ships between persistence and stimulus properties are
built into the structure, or non-parametric design,
of the model. In the present simulations, our goal
has thus been to clarify and illustrate the qualita-
tive functional meaning of persistence data. In much
the same way, quantitative persistence values vary
from subject to subject and with experimental con-
ditions. This being said, it needs also to be noted
that no alternative explanation of persistence prop-
erties has explained as wide a range of data, provided
the level of detail implemented herein, or attributed
these properties to fundamental design constraints on
the dynamic balance that regulates perceptual reso-
nance and reset.

Given that the entire structure and dynamics of
the model had previously been derived and tested on
other data than persistence data, the model’s abil-
ity to simulate the important functional properties
of persistence data lends even greater support to the
neural reality of these model mechanisms. The ability
of this same small set of model mechanisms to explain
data from several perceptual and neural paradigms
also provides conceptual linkages across paradigms
whereby new types of experiments can be designed
to further test these mechanisms.

In summary we have shown how an analysis of
the BCS cortical model can offer new mechanistic
and functional explanations of data on visual per-
sistence. These explanations are consistent with the
theory’s previous explanations of boundary comple-
tion (Grossberg & Mingolla, 1985a), texture segre-
gation (Grossberg & Mingolla, 1985b), shape-from-
shading (Grossberg & Mingolla, 1987), and 3-D vi-
sion (Grossberg, 1987b, 1993), among others, while
extending its explanatory range still further into the
difficult temporal phenomena of visual persistence.
The functional role of the feature binding and reset
mechanisms that the model predicts to be responsi-
ble for persistence suggests links between persistence
and fundamental issues in the formation and breakup
of perceptual groupings in a dynamically fluctuating
environment. Thus, far from being esoteric labora-
tory phenomena, data on persistence afford impor-
tant clues about some of the most fundamental pro-
cesses of preattentive vision, processes moreover that
are being increasingly well characterized by neural
network architectures.
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Appendix: Network Equations

and Parameters

The simulations of the model are a simplification of
the system’s interactions described elsewhere (Gross-
berg & Mingolla, 1985a,b, 1987). These simplifica-

tions were necessitated by the following fact. Simula-
tions in the prior reports of the model concerned the
spatial interactions of the segmentation system and so
had no need to implement the temporal dynamics of
resonance and reset, whose juxtaposition of fast and
slow time scales greatly increased the computational
load in simulations. To manage this load, the ex-
perimental stimuli were also simplified, as indicated
in the text without losing their essential characteris-
tics. Thus, the quantitative matches of simulations to
data are less significant in this paper than the anal-
ysis of how model mechanisms work together to ex-
plain the complex qualitative pattern of persistence
data. These qualitative properties are, moreover, ro-
bust. In much the same way, different psychophysical
studies of persistence do not produce identical quan-
titative values across observers, but do show consis-
tent relationships between persistence and stimulus
properties. The psychophysical studies of persistence
also do not give absolute measures, but provide only
relative values that can be ordered within an experi-
mental paradigm.

The model contains a total of eight levels of model
neurons or transmitter gates. Each level, except for
the first, consists of two parallel pathways coding
horizontal and vertical orientations at each pixel lo-
cation. Within the second level, each orientation-
specific pathway contains two simple cells responsive
to opposite polarities of luminance gradients. Thus,
associated with each pixel point of the image are sev-
enteen different cells and transmitter gates. Since we
carried out all simulations on a 40×40 pixel array, the
simulated network contained 27, 200 cells and trans-
mitter gates. A differential equation describes the
behavior of each cell and gate.

We eased the computational requirements of inte-
grating 27, 200 differential equations with a number
of simplifications. First, rather than integrate all the
differential equations explicitly, we algebraically com-
puted some cell activities at the equilibrium value of
the differential equation. We made this simplifica-
tion for the unoriented on-center, off-surround cells
in Level 1, the oriented polarity-specific simple cells
of Level 2, and the hypercomplex cells undergoing lat-
eral inhibition in Level 4. Computing the values of
these cells at equilibrium makes the assumption that
they operate on a faster time scale than the other
cells. Since the rate-limiting time scales of the sim-
ulations involve dynamics of habituative transmitter
gates and feedback within the BCS, unfolding the dy-
namics of these cells would not adversely affect our
explanations of visual persistence but would greatly
increase the computation required to simulate the
model.

A second simplification took advantage of symme-
tries in the image plane. If the images presented to
the system on the left and right sides of the plane are
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mirror images, then activities produced on the right
half will have corresponding equal values on the left.
Thus, to save computation, we could compute only
the values on the right side of the image plane and
extrapolate the results to account for the full image
plane. Similarly, when the top and bottom quadrants
of the right side are mirror images, we only needed
to compute the cell responses on the bottom quad-
rant. Finally, if the upper and lower diagonals in the
quadrant are mirror images, then the values of the
horizontal cells in the lower (upper) diagonal equal
the values of the vertical cells in the upper (lower)
diagonal. Thus, by restricting the input stimuli to be
square-shaped, we only had to integrate the differen-
tial equations for the horizontal cells in the bottom
right of the image plane to account for the behavior
of the entire system.

These simplifications reduced the system of 27, 200
differential equations to only 1600 differential equa-
tions. The LSODA integrator routine (Petzold &
Hindmarsh, 1987) performed the integration of these
equations. We based all the network equations upon
those described in Grossberg & Mingolla (1985b).
Level 0: Image Plane.

Each pixel has a value associated with retinal lu-
minance. We describe the pixel-luminance values of
the different stimuli used in the simulations below.
Level 1: Center-Surround Cells.

The activity X1
ij of a Level 1 cell centered at po-

sition (i, j) obeys a shunting on-center, off-surround
equation

dX1
ij

dt
= −X1

ij + (A − X1
ij)

∑

pq

BijpqIpq (1)

−(X1
ij + C)

∑

pq

DijpqIpq ,

where Ipq is the retinal luminance at position (p, q),
A is the maximum activity of the cell, −C is the
minimum activity of the cell, and

Bijpq = B exp[−α−2 log 2[(i − p)2 + (j − q)2]] (2)

Dijpq = D exp[−β−2 log 2[(i − p)2 + (j − q)2]] (3)

are excitatory and inhibitory Gaussian weighting
functions, respectively. The term log 2 means the pa-
rameters α and β set the radius of their respective
Gaussians at half strength. Parameters B and D are
constant scaling terms.

To save computation, the equilibrium response of
the differential equation is found by setting the left
hand side of equation (1) equal to zero. The resulting
algebraic equation can be solved to find

X1
ij =

A
∑

pq BijpqIpq − C
∑

pq DijpqIpq

1.0 +
∑

pq(Bijpq + Dijpq)Ipq

. (4)

The activities of cells at this level share some key
properties with those found in ganglion cells or LGN
(Grossberg, 1987a). No off-center on-surround cells
were implemented in our simulations.

Level 2: Oriented Simple Cells.

The following equations define oriented simple cells
that are centered at position (i, j) with preferred ori-
entation k. To create a vertically oriented input field,
or in-field, that is specific to the polarity of the lumi-
nance gradient, divide an elongated region into a left
half Lijk and a right half Rijk. Add up the weighted
sum of the Level 1 inputs within the range of the left
side

Fijk =
∑

pq∈Lijk

EijpqX
1
pq (5)

and the right side

Gijk =
∑

pq∈Rijk

EijpqX
1
pq (6)

of the region, with

Eijpq = exp[−γ−2 log 2(i − p)2] (7)

decreasing for inputs further away from the oriented
center-line of the in-field the parameter γ controls
the rate of fall off. Then a simple cell that is selec-
tively responsive to a bright-to-dark luminance gra-
dient obeys the differential equation

dX2BD
ijk

dt
= −X2BD

ijk + [Fijk − Gijk ]+, (8)

where [p]+ = max(p, 0). A cell responsive to a dark-
to-bright luminance gradient obeys the equation

dX2DB
ijk

dt
= −X2DB

ijk + [Gijk − Fijk ]+. (9)

To save computation, the activities of these cells
were computed at equilibrium as:

X2BD
ijk = [Fijk − Gijk]+, (10)

and
X2DB

ijk = [Gijk − Fijk]+. (11)

Level 3: Oriented Complex Cells.

Each cell in Level 3 becomes insensitive to the po-
larity of contrast by summing the rectified activities
of the cells in Level 2 of the same location and orienta-
tion. Each Level 3 cell obeys the differential equation

dX3
ijk

dt
= −X3

ijk + H(X2BD
ijk + X2DB

ijk ). (12)

Parameter H scales the activities of the input signals
to the complex cell.
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Level 4: Habituative Transmitter Gates.

The signal in each oriented pathway is gated, or
multiplied, by a habituative transmitter which obeys
the following equation (Grossberg, 1972)

dX4
ijk

dt
= K[L(M − X4

ijk) − (X3
ijk + J)X4

ijk]. (13)

This equation says that the amount of available trans-
mitter X4

ijk accumulates to the level M , via term

KL(M − X4
ijk), and is inactivated by mass action

at rate K(X3
ijk + J)X4

ijk , where J is the tonic in-

put of a gated dipole and X3
ijk is its phasic incre-

ment. We always set the rate K much smaller than
1.0 so that these equations operate on a slower time
scale than the equations describing cell activities. At
the beginning of each simulation, each transmitter
value is set to the non-stimulated equilibrium value
X4

ijk = LM/(L + J).

Level 5: First Competitive Stage of Hypercomplex

Cells.

The gated signals of a fixed orientation compete
via on-center off-surround spatial interactions. Along
with the tonic signal coming up through the habitu-
ative transmitters, each cell also receives a tonic in-
put which supports disinhibitory activations at the
next competitive stage (see Grossberg & Mingolla,
1985a,b). The activity of a Level 5 cell obeys differ-
ential equation

dX5
ijk

dt
= −X5

ijk + J + (X3
ijk + J)X4

ijk + NX8
ijk (14)

−X5
ijk

∑

pq

Pijpq(X
3
pqk + J)X4

pqk,

where −X5
ijk models the passive decay, the parame-

ter J establishes a non-zero baseline of activity for the
cell, the term (X3

ijk + J)X4
ijk is the gated excitatory

input from the lower level at the same position and
orientation, the term NX8

ijk is a feedback signal from
the higher level cell of the same position and orienta-
tion, and the term X5

ijk

∑
pq Pijpq(X

3
pqk + J)X4

pqk is
the inhibitory input from the lower level cells of the
same orientation and nearby spatial positions. The
inhibitory weights fall off in strength as the spatial
distance between cells increases, as in

Pijpq = P exp[−δ−2 log 2[(i − p)2 + (j − q)2]], (15)

where P scales the strength of the inhibition, and δ
controls the spread.

For the simulations in this paper, the differential
equation was solved at equilibrium as

X5
ijk =

J + (X3
ijk + J)X4

ijk + NX8
ijk

1.0 +
∑

pq Pijpq(X3
pqk + J)X4

pqk

. (16)

Level 6: Second Competitive Stage of Hypercomplex

Cells.

The output signals from the first competitive stage
compete across orientation at each position. The ac-
tivity of a cell receiving this competition obeys the
differential equation

dX6
ijk

dt
= −X6

ijk + (X5
ijk − X5

ijK) (17)

where X5
ijk and X5

ijK represent orthogonal orienta-
tions.

Level 7: Cooperative Bipole Cells and Spatial Impen-

etrability.

The next level uses a simplified version of bipole
cells. As in Level 1, we divide the in-field of each
horizontal bipole cell into a left side Lijk and a right
side Rijk (top and bottom for vertically oriented
bipole cells). Each bipole cell then sums up excita-
tory like-oriented signals and inhibitory orthogonally-
oriented signals within each side. A slower-than-
linear bounded function squashes the net signal of
each side. We then set the output threshold of the
bipole cells so that boundaries must stimulate both
sides of the receptive field for the cell to generate an
output signal. The differential equation describing
each bipole cell activity is

dX7
ijk

dt
= −X7

ijk +f(
∑

pq∈Rijk

[X6
pqk]+− [X6

pqK ]+) (18)

+f(
∑

pq∈Lijk

[X6
pqk]+ − [X6

pqK ]+)

where

f(w) =
Qw

1.0 + w
(19)

acts to squash the net input on each side of the bipole
cell’s receptive field so that it never exceeds the value
of parameter Q. Grossberg & Mingolla (1985b) use
a more complicated bipole cell. Their bipole cells re-
ceive excitatory inputs from a range of orientations
that are weighted by a function that decreases with
spatial distance from (i, j) and orientational differ-
ence from k. Grossberg & Mingolla (1985b) use these
features to explain a variety of grouping phenomena,
but simpler bipole cells suffice to simulate the basic
properties of boundary signal persistence.

Level 8: Spatial Sharpening.

Output signals from the bipole cells are thresholded
to prevent feedback unless inputs activate both sides.
These output signals then undergo a spatial sharpen-
ing much as in the first competitive stage of Level 5.
The activities of cells in Level 8 obey the differential
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equation

dX8
ijk

dt
= −X8

ijk+[X7
ijk−R]+−X8

ijk

∑

pq∈Sij

T [X7
pqk−R]+

(20)
where parameter R is the output threshold for bipole
cells, parameter T scales the strength of the spatial
inhibition, and Sij is the eight nearest neighbors to
pixel (i, j). These signals are scaled by parameter N
before feeding back to the cells in Level 5 to close the
feedback loop.

Computation of Images and Persistence.

We operationally defined the boundaries of an im-
age to be persisting whenever, after target offset, a
cell in Level 6 at the location and orientation of the
target image edge (real or illusory) had an activity
value greater than 0.5. The computer checked the val-
ues every 0.5 time steps after stimulus offset (one time
unit in the simulation is equivalent to ten millisec-
onds). For all simulated images a value at each pixel
in simulated foot Lamberts indicated luminance in-
tensity. The background luminance was always 10−6

simulated foot lamberts.

The simulated luminances and durations of the tar-
get flashes for Figure 1b are indicated in the figure
and were all bright squares (26×26 pixels) on a dark
background.

The inducers for the illusory stimuli in Figure 2b
were luminance increments (pixel values of 0.15 sim-
ulated foot lamberts) in the shape of L’s oriented ap-
propriately in each quadrant to line up the inducer
edges. The real stimulus was a bright outline (3 pixels
wide) square of the same luminance and size (32×32
pixels) as the illusory square.

We did not simulate the remaining stimuli shown
in Figure 2a because the simplified BCS used in our
simulations creates boundary signals between the in-
ducing stimuli for all of the stimulus sets. It is not
the focus of this paper to show that our simulations
accurately create illusory contours. Rather, we in-
vestigated the persistence of boundaries generated
without a luminance edge. Illusory contours are one
example of these types of boundary signals. A full
simulation of the BCS with more orientations, and
whose bipole cell weights are modulated in two di-
mensions of spatial position and one of orientation,
can accurately predict the generation of illusory con-
tours (Gove et al., 1993). Such a simulation is beyond
the scope of this paper.

The test stimulus for Figure 3b was a pair of hori-
zontally oriented luminance bars (10× 1 pixels, pixel
values of 0.15 simulated foot lamberts) separated by
three pixel spaces. The adaptation stimulus was ei-
ther identical to the test stimulus or six small vertical
lines (4 × 1 pixels each) evenly spaced and placed to
intersect with the horizontal bars of the test stimulus.

The adaptation and test stimuli were both presented
for 100.0 simulated milliseconds.

The target for Figure 4b was a bright square of
20 × 20 pixels with a pixel luminance value of 0.323
simulated foot lamberts. The mask for Figure 4b con-
sisted of a bar (16 × 2 pixels) along each edge of the
target with equal pixel luminance and an edge-to-
edge separation from the target of 3 to 9 pixel spaces,
each pixel space corresponding to 0.05 degrees of vi-
sual angle. Larger spatial separations could not be
used due to the limited size of the simulation plane.
We always presented the target flash for a duration
of 50.0 simulated milliseconds, and matched its offset
with the onset of the mask. We kept the masking
flash on until the boundaries of the target flash fell
below threshold.

Parameter selection.

Because integration of nonlinear differential equa-
tions is computationally expensive, we simplified the
BCS equations as much as possible. As a result, we
could not use the same parameters as other simu-
lations of the BCS, which calculated the equilibrium
response of the system (Cruthirds, et al., 1992; Gove,
Grossberg, & Mingolla, 1993; Grossberg & Mingolla,
1985a,b, 1987; Grossberg, Mingolla, & Williamson,
1993). In particular, whereas the present simulations
used only vertically and horizontally oriented cells,
other BCS simulations have used oblique orientations
as well.

To remain consistent with earlier simulations and
to explain the properties of persistence, the param-
eters used in our simulations were required to meet
several properties. First, the parameter set had to
allow the BCS to locate oriented boundaries. For ex-
ample, if P is set too large, then spatial inhibition
between cells of like orientation and nearby positions
can mutually inhibit activities at the next layer so
much that no signal survives the competition. Sim-
ilarly, the threshold for the bipole cell activities, R,
cannot be set too large (relative to the parameter Q
and the strength of the inputs to the bipole cells) or
the bipole cells will never fire.

A second requirement of the parameter set was that
the activities in the feedback loop, once activated,
needed to be strong enough to persist once the ex-
ternal inputs were turned off. The parameters N ,
Q, R, and T in the bipole feedback pathway control
this property of the network. These parameters were
set to insure a persisting activity in the network and
proper creation of boundary signals.

Figure 11a shows how the strength of activities in
the feedback loop influences persistence. Parameter
N scales the strength of the bipole feedback pathway
to the lower stages. Increasing N strengthens the
boundaries in the BCS without changing the strength
of the reset signals. Figure 11 shows the persistence
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of a 100 simulated milliseconds, 0.323 foot lamberts
stimulus. Figure 11a shows that as N increases, per-
sistence also increases because the hysteresis in the
feedback loop is stronger.

A third requirement of the parameter set was that
it had to allow generation of reset signals upon stim-
ulus offset. This was realized by properly choosing
parameters J , K, L, and M , of the habituative trans-
mitter gates. Grossberg (1980, Appendix E) showed
that the strength of the reset signal increases with
parameter M and decreases as J or L are increased.
These parameters also establish the lower limit (equi-
librium) of the gate strength. If the gate was allowed
to habituate too much, it would no longer pass on
sufficient input to the higher levels. In such a case,
boundaries could disappear before the offset of the
stimulus. It is easy to find parameters which avoid
this problem. Parameter K controls the relative rate
of habituation, and increasing K allows for faster
habituation and stronger reset signals. Figure 11b
shows that increasing K decreases persistence.

The final task of parameter setting was to control
the value of the inputs to the habituative gates so
that they created a strong feedback loop and gen-
erated strong reset signals. The six parameters of
Level 1 act to compress the cell response to luminous
inputs. Equation (1) could have been replaced with
a function like log(Iij) to get similar results, but we
choose equation (1) to remain consistent with other
simulations of the BCS (Gove et al., 1993; Cruthirds
et al., 1992). This stage of compression explains why
the two lower curves of Figure 1 have similar persis-
tence despite the fact that the stimulus of the lower
curve is significantly more luminous. The parame-
ters of Levels 2 and 3 simply scale the activities of
the oriented filters. Increasing the activities of these
cells has two effects. First, stronger signals create
stronger activities in the feedback loop, which act to
increase persistence. At the same time, these stronger
signals increase habituation to generate stronger re-
set signals upon stimulus offset. The balance of these
factors determines persistence. Figure 11c shows that
as parameter H increases from 0.005 to 0.025 persis-
tence increases. This increase in persistence indicates
that the influence of the additional strength given to
the activities in the feedback loop is greater than the
additional habituation caused by the stronger inputs.
As H increases still further, the additional habitu-
ation, and stronger reset signals, tend to dominate
the increases in boundary signal strength. This same
analysis was used to explain the inverted-U shapes of
the curves in Figure 1b and Figure 2b, as a function
of stimulus duration.

For our explanations of persistence properties, the
only “disallowed” values of parameters are ones that
would generate absurd consequences even outside the
domain of visual persistence. For example, parame-
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Figure 11: Changes in persistence as parameters are
modified. In each case only one parameter is varied.
The large filled dots mark persistence with the de-
fault parameter value. (a) Parameter N in equation
(14) scales the strength of the bipole pathway feed-
back signals. Increasing parameter N strengthens the
feedback signals to generate a stronger hysteresis in
the network without affecting the strength of the re-
set signals. Persistence increases with N . (b) Param-
eter K in equation (13) controls the rate of habitu-
ation of the transmitter gates. Greater habituation
makes stronger reset signals, so persistence decreases
as K increases. (c) Parameter H scales the inputs to
the habituative gates in equation (12). Increasing H
creates a stronger resonance and stronger reset sig-
nals. Starting with small values, increasing H has a
larger effect on the hysteresis than on the strength
of the reset signals, thus persistence increases. At
larger values, increasing H has a larger effect on the
strength of the reset signals than on the hysteresis,
thus persistence decreases.



G. Francis et al. / Vision Research 34 (1994) 1089–1104 1107

ters could be set to prevent bipole cells from perform-
ing boundary completion. However, once they are set
so as to permit completion, illusory contours persist
longer than real contours. That the data curves can
be explained through an analysis of the model net-
work architecture shows that the persistence proper-
ties of the model are robust.

The network parameters remained unchanged
across all simulations, only the image luminances,
durations, or spatiotemporally adjacent stimuli were
varied. The following parameters were used: A =
67.5, B = 2.5, C = 60.0, D = 0.05, H = 0.1,
J = 20.0, K = 0.0003, L = 3.0, M = 5.0, N = 13.0,
P = 0.0005, Q = 0.5, R = 0.61, T = 0.3, α = 0.5,
β = 3.0, γ = 1.5, δ = 3.0. Each side of the oriented
masks in Level 2, Lijk, Rijk, were rectangles of 4× 1
pixels in size. Each side of a bipole cell was restricted
to a single column (vertical) or row (horizontal) ex-
tending 18 pixels from the position of the bipole cell.
For comparison purposes, the dashed lines in Fig-
ure 1b we computed with K = 0.0; and the dashed
line in Figure 4b was computed with P = 0.0.

All simulations were carried out on an Iris 4/280
or an Iris 8/280 Silicon Graphics Superminicomputer.
The computation of each simulated data point in Fig-
ures 1b, 2b, 3, and 4b, required approximately half
an hour on a multi-user machine.


