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Comment on “Competition for consciousness among visual events: The

psychophysics of reentrant visual processes” (Di Lollo, Enns and Rensink, 2000)
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Di Lollo, Enns & Rensink (2000) reported properties of masking that they claimed were
inconsistent with all current models. We show, through computer simulation, that many

current models can account for their data. Although Di Lollo et al. argued that their data
could only be accounted for with models that incorporate reentrant processing, we show that

reentrant processing is not necessary.
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lished article.

Introduction

Visual masking has been used both to study characteristics of
visual perception and as a tool to explore other aspects of cog-
nition (see Breitmeyer & Ögmen (2000) and Enns & Di Lollo
(2000) for recent reviews). Given the long history and strong
interest in masking, it is significant when fundamentally new
properties of masking are discovered. In a series of publications,
Enns and Di Lollo (1997, 2000) and their colleagues (Bischof &
Di Lollo, 1995; Di Lollo, Bischof & Dixon, 1993; Di Lollo, Enns
& Rensink, 2000) reported on three properties of masking. Ex-
perimental data that reveal all of these effects can be seen in
Figure 1a.

The first property is referred to as common-onset masking
because the target and mask appear at the same time. Many
experiments on masking have focused on situations where the
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stimulus onset asynchrony (SOA) between the target and the
mask are varied. Often the strongest masking occurs for a pos-
itive SOA, when the mask follows the target. Di Lollo et al.
(1993) and Bischof and Di Lollo (1995) reported that strong
masking occurs with SOA equal zero if the mask stimulus con-
tinues to be presented after the target stimulus turns off. The
longer the duration that the mask continues after target off-
set, the stronger the masking effect. These effects are visible
in Figure 1a, which plots percentage correct identifications of a
feature of the target as a function of the mask alone duration.
The data are reproduced from the third experiment of Di Lollo
et al. (2000). For at least some of the curves, the percentage
correct drops substantially with longer mask alone durations.
While previous studies had reported masking for SOA equal
zero (e.g., Spencer & Shuntich, 1970) and effects of mask dura-
tion (e.g., Breitmeyer, 1978), the experimental conditions were
quite different from these new experiments.

A second property is the existence of masking effects with
sparse masks. In many masking studies the target and mask
are roughly equivalent in size, intensity, and duration. Enns
and Di Lollo (1997) and Di Lollo et al. (2000) reported strong
masking effects when the mask consisted of only four small dots
on the corners of an imaginary square around the target. This
kind of mask was used to produce the data in Figure 1a. This
was not an entirely new finding as some masking from sparse
masks occurred in studies by Werner (1935), Sherrick and Dem-
ber (1970) and Gilden, MacDonald and Lasaga (1988); but in
combination with other properties it suggested to Enns and Di
Lollo (1997) a new type of masking.

The third property is the role that attention seems to play
in revealing the effect of a sparse mask. The separate lines in
Figure 1a indicate conditions with varying numbers of possible
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Figure 1: Masking effects for common-onset of the target and
mask, a sparse mask, and varying target set sizes. (a) Experi-
mental data from Di Lollo et al. (2000). The legend indicates
the target set size. Masking occurs for a combination of large set
size and long mask alone duration. (b)–(d) Simulation results
from models of masking. The legend in each graph indicates
the ratio of the mask signal intensity to the (fixed) target signal
intensity; this value is hypothesized to be related to the effect
of attentional focus that varies with set size. (b). Simulation
results from the model of Weisstein (1968, 1972). (c) Simu-
lation results from the model of Bridgeman (1971, 1978). (d)
Simulation results from the model of Francis (1997).

targets (set size). In this experiment the mask also functioned
as a cue to indicate which possible target item needed to be
used for the observer’s report. As Figure 1a shows, with a
sparse mask, strong masking effects only seem to appear for
a combination of long mask duration and large target set size.
Attentional effects resulting from variation in target set size had
been studied in masking before (e.g. Weisstein, 1966), but not
in combination with common-onset masking and a sparse mask.

On the basis of these findings, and other related experimen-
tal results, Enns and Di Lollo (1997, 2000) and Di Lollo et al.
(2000) concluded that their set of results is incompatible with
current models and theories of masking and that new models
based on reentrant processing were required. Contrary to this
conclusion, we show that almost all current mathematical theo-
ries of backward visual masking can account for the properties
of common-onset masking and the existence of masking with
sparse masks. In addition, at least for the data in Figure 1a, it
is fairly trivial to extend these models to account for the effects
of target set size. Moreover, we show that reentrant processing
is not necessary to account for the data.

Model simulations

Three out of four quantitative models of masking can repro-
duce the basic properties of masking found in Figure 1a. These
include the models proposed by Weisstein (1968, 1972), Bridge-
man (1971, 1978), and Francis (1997). The only quantitative

model that cannot account for these effects is one proposed by
Anbar and Anbar (1982), which, in its current form, is insensi-
tive to variations in mask duration. For all of our simulations,
we made no changes to the models or model parameters what-
soever. Details of the model equations and parameters can be
found in Francis (2000).

Simulating common-onset masking is directly modeled by the
relative timing of target and mask signals in the models. Simu-
lating the presence of a sparse mask depends on the model. Both
the Weisstein (1968, 1972) and Bridgeman (1971, 1978) models
have insufficient representation of spatial extent and layout of
the target and mask stimuli to directly portray a sparse mask.
As a result, for these models the representation of a sparse mask
is coded with a mask that has a weak intensity. The Francis
(1997) model does include an explicit representation of extent
and layout of the target and mask stimuli. To emulate a four-
dot mask, the simulations used a sparse mask of the same type
used to produce the data in Figure 10 of Francis (1997), which
accounted for data by Sherrick and Dember (1970) on effects
of mask completeness. The sparse mask contained only 28% of
the pixels of a full mask.

None of the models make particular claims about the com-
putational effect of attentional focus, and we expect that there
are several possibilities that could be integrated into existing
models. We considered a hypothesis that fits naturally into the
framework of current models. We supposed that attentional fo-
cus on the cued target acts to prevent the mask from having a
strong impact on the target signal. Decreases in the target set
size thus would lead to a weaker mask signal and weaker overall
masking. Attentional focus is thus modeled as a weakening of
the mask intensity.

Figures 1b–d show simulation results under the common-
onset masking paradigm for the Weisstein (1968, 1972), Bridge-
man (1971, 1978) and Francis (1997) models, respectively. Here
the separate curves are for different ratios of the intensity of
the mask signal relative to the target signal (the actual inten-
sities of the signals depended on the model). To map these re-
sults to the experimental data in Figure 1a we are hypothesizing
that smaller target set sizes correspond to weaker mask signals
(smaller ratios). With this hypothesis, the pattern of results is
basically the same as for the experimental data in Figure 1a.
No doubt better quantitative fits could be produced by varying
model parameters. In particular, a change of parameters could
rescale the x-axis so that it covers the same time range as the
experimental data.

These simulation results refute the claim made by Di Lollo et
al. (2000) that no current models can account for their exper-
imental data. Indeed, the basic mechanisms to account for the
experimental data were embedded in models that are nearly 30
years old. This discrepancy between the conclusions of Di Lollo
et al. (2000) and the actual capabilities of existing models to
account for the experimental data occurs because Di Lollo et
al. present one theory of masking as representative of all the-
ories of masking. They suggested that all current theories are
based on the hypothesis that masking interactions result solely
from inhibition generated by transient signals. Such transient
inhibition would be insensitive to variations in mask duration.
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Di Lollo et al. further argue that all such models are incapable
of producing strong masking with common onset of the tar-
get and mask. If the models were truly constructed this way,
Di Lollo et al. would be correct in claiming that the models
could not account for their data. However, the models are not
based solely on inhibition from transient signals, and, as Fig-
ure 1 shows, the models can generate substantial masking with
common-onset. Moreover, even the most prominent theory that
utilizes transient inhibition (Breitmeyer & Ganz, 1976; Breit-
meyer, 1984) also hypothesizes additional mechanisms. Bre-
itmeyer and Ganz (1976) proposed that Type A masking ef-
fects (where the strongest masking occurs for common onset of
the target and mask) are due to interactions between sustained
signals of the target and mask. A quantitative version of the
full Breitmeyer and Ganz theory has never been developed, but
it seems likely that the theory could account for properties of
common-onset masking.

Di Lollo et al. (2000) argued that feed-forward theories of
information processing could not account for their experimen-
tal data (most notably the properties of common-onset mask-
ing) and that models with reentrant (feed-back) processing were
necessary. The data do not support such strong claims. In fact,
two key model characteristics account for common-onset mask-
ing in all the models (including the model proposed by Di Lollo
et al.). First, all of these models hypothesize that the target
stimulus engenders some type of persisting trace in the visual
system. The strength of the target percept (which leads to
reports of visibility or percent detection) is based on the mag-
nitude of this persisting trace. For the Di Lollo et al. model,
the percept strength is related to the magnitude of this trace at
the moment attention is focused on the target. For the other
models, the percept strength is related to an integral of the
persisting trace over time. Second, all the models hypothesize
that a signal corresponding to the mask weakly interacts with
the persisting trace to make it smaller and reduce the strength
of the target percept. The masking effect plays out over time
as the target’s persisting trace fades away. The mask-to-target
interaction at any given point in time must be weak to allow
variation in the mask duration to produce measurable effects.
If the mask-to-target interaction was so strong as to completely
erase the target’s persisting trace at the mask’s onset, then in-
creases in mask duration would never lead to stronger masking
(there would be a floor effect).

These two model properties are a subset of model character-
istics that were identified by Francis (2000) as necessary for a
class of models (this class includes all the models discussed here)
to account for u-shaped backward masking functions, which are
generated by fixing target and mask durations and varying SOA.
Thus, while common-onset masking may provide constraints on
model parameters, it offers fewer constraints on fundamental
model hypotheses than other types of masking.

Although reentrant processing can produce necessary model
characteristics to account for the data, reentrant processing is
not itself a necessary characteristic. Indeed, the model of Weis-
stein (1972) is strictly feed-forward, yet it accounts for the ex-
perimental data of Di Lollo et al. fairly well. The models of
Bridgeman (1971, 1978) and Francis (1997) include feed-back

(reentrant processing), and here the feed-back provides a mech-
anism for either producing the target’s persisting trace or insur-
ing that the mask-to-target interaction is weak (Francis, 2000).

Di Lollo et al. (2000) also suggested that current models could
not account for their experimental results because the current
models are contour based, and there are not enough contours
in the sparse masks to produce strong masking. There is a le-
gitimate question about whether masking is contour based or is
object based (as is suggested by Di Lollo et al.). It is true that
the current models of masking assume that the mask inhibits
the target through some interaction of contours. It is also true
that these models all suggest that with fewer or weaker con-
tours, the strength of masking should weaken. However, it does
not logically follow that a small amount of contour cannot ex-
hibit any masking. For example, if the experimental task is
particularly challenging, even weak inhibition from the mask to
the target can give rise to substantial decrements in task per-
formance. Moreover, it is not clear that four dots, as used by
Di Lollo et al. (2000), is an appropriate definition of a “small”
amount of contour. It may be that any visible stimulus has suf-
ficient contour to produce masking in the context of distributed
attention.

Conclusions

Contrary to the claims of Di Lollo et al. (2000), we have shown
that most current quantitative models of backward masking can
account for properties of common-onset masking and for mask-
ing with sparse masks. We have also shown that a fairly simple
assumption regarding the role of attention can account for the
effects of target set size reported by Di Lollo et al. (2000).

This is not a minor point of contention. On the basis of their
experimental findings, Enns and Di Lollo (1997) and Di Lollo et
al. (2000) argued that they had found a new form of masking
and that this new form of masking required a new explana-
tion. These conclusions have been repeated in additional stud-
ies (e.g., Jiang & Chun, 2001a,b; Enns, in press) that attempt
to investigate the new type of masking and the new theory. It
is important to properly characterize how the new data and
new theory fit into current theories. Although current theories
of masking account for the data very nicely, there is certainly
nothing wrong with proposing a new explanation of masking.
The theory put forth by Di Lollo et al. (2000) has several in-
triguing characteristics, and we hope it is developed further.
However, the existing data do not allow us to clearly prefer this
new model over other models that have been previously ana-
lyzed and applied to other data sets. Moreover, since existing
models can account for both old and new forms of masking,
it raises doubts about whether Enns and Di Lollo (1997) have
found a truly new form of masking.

We do agree with Di Lollo et al. (2000) about the importance
of integrating the role of spatial attention into theories of mask-
ing. We look forward to additional data on the role of spatial
attention in masking and hope that such data will either guide
the development of current models, or allow us to reject them.
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