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a b s t r a c t

Human beings perceive 3D shapes veridically, but the underlying mechanisms remain unknown. The
problem of producing veridical shape percepts is computationally difficult because the 3D shapes have
to be recovered from 2D retinal images. This paper describes a new model, based on a regularization
approach, that does this very well. It uses a new simplicity principle composed of four shape constraints:
viz., symmetry, planarity, maximum compactness and minimum surface. Maximum compactness and
minimum surface have never been used before. The model was tested with random symmetrical polyhe-
dra. It recovered their 3D shapes from a single randomly-chosen 2D image. Neither learning, nor depth
perception, was required. The effectiveness of the maximum compactness and the minimum surface con-
straints were measured by how well the aspect ratio of the 3D shapes was recovered. These constraints
were effective; they recovered the aspect ratio of the 3D shapes very well. Aspect ratios recovered by the
model were compared to aspect ratios adjusted by four human observers. They also adjusted aspect ratios
very well. In those rare cases, in which the human observers showed large errors in adjusted aspect
ratios, their errors were very similar to the errors made by the model.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Human observers perceive shapes of 3D objects veridically, that
is, as they actually are ‘‘out there”. The percept of their shape rarely
changes, when the direction from which the objects are viewed,
changes. This fundamental perceptual achievement is called
‘‘shape constancy.” Shape constancy is the sine qua non of shape.
It allows us to know that we are studying shape, rather than the
depth or the orientation of surfaces. In other words, shape con-
stancy provides the defining characteristic for the presence of the
property called ‘‘shape”. The depth and orientation of surfaces de-
pend on viewpoint. Shape does not. Shape constancy is a member
of a large group of perceptual constancies that include size, speed,
lightness, and color. All of these constancies are defined in the
same way, namely: the percept of X is constant despite changes
in the viewing conditions that produced changes of the 2D retinal
image of X. But, are all perceptual constancies produced by the
same kind of underlying mechanism? Until recently, it was com-
monly assumed that all constancies, including shape, were: They
were all achieved by ‘‘taking context into account.” Context was as-
sumed to be critical for all of these constancies because the 2D ret-
inal image of a 3D scene is ambiguous. But note that shape is
fundamentally different from all other perceptual properties be-

cause it is complex. Complexity allows us to perceive shape with-
out making use of context, that is, without making use of such
information as the distance or the orientation of the object’s sur-
faces. What do we mean by complexity? Look at Fig. 1. Consider
how many points da Vinci had to move to transform the circle into
the inscribed figure of a man. Ambiguity remains only at the tips of
his fingers and the soles of his feet. It seems unlikely that anyone
would confuse one of these 2D shapes with the other regardless
of how they are slanted relative to the observer. Obviously, com-
plexity also works with the shapes of 3D objects. A book will never
produce the same retinal shape as a teapot, regardless of the direc-
tion from which they are viewed. This is actually true of most
shapes of real objects ‘‘out there.” The fact that different 3D shapes
almost never produce identical 2D retinal shapes is fundamental
for understanding shape constancy. This fact cannot be explained
by an analysis of the depths, corresponding to individual points
on the retina. The depths of these individual points are always
ambiguous, as the Bishop Berkeley was the first to emphasize in
his monograph, ‘‘The New Theory of Vision” (1709/1910). But, keep
in mind that the shape of a 3D object rarely is ambiguous. This fact
is what makes the recognition of the 3D shapes of familiar objects
possible in the first place. Note that one never speaks about the
recognition of the depth or of local surface orientation in the same
way one speaks about the recognition of 3D shape. The complexity
of shape makes it possible to recognize and recover the 3D shapes
of both familiar and unfamiliar objects. Thus, shape is unique.
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Shape’s complexity allows constancy to be achieved more effec-
tively than the constancy of any other perceptual property, but it
can only be effective after the shape of the 2D retinal image of a
3D object is established by figure-ground organization. The
uniqueness of shape and the fundamental significance of figure-
ground organization for the perception of the 3D shapes of objects
‘‘out there” have been overlooked by almost everyone since the Ge-
stalt psychologists called attention to figure-ground organization
almost 100 years ago (Koffka, 1935; Rubin, 1915; Wertheimer,
1923/1958). Fortunately, there has been a revival of interest in fig-
ure-ground organization during the last decade by psychophysi-
cists (for a review see Kimchi, Behrmann, & Oslon, 2003),
engineers (for a review see Boyer & Sarkar, 2000) and neuroscien-
tists (Lamme & Spekreijse, 1996; Lamme, Zipser, & Spekreijse,
1998; Togt, Kalitzin, Spekreijse, Lamme, & Super 2006). Progress
has been slow so far, but our understanding of figure-ground orga-
nization, as well as of its neural substrate, has been improving
steadily. The work of Prof. Spekreijse and his associates on
figure-ground organization in primates is clearly a promising
approach to developing a biologically-plausible theory of figure-
ground organization, a development that may advance our under-
standing of this fundamental process a lot.

The significance of this paper is to show that a complete theory
of 3D shape perception will be possible as soon as the mechanisms
underlying figure-ground organization are understood because we
have been able to develop a computational model that recovers the
3D shape of an object ‘‘out there” from its single 2D retinal repre-
sentation. Human beings do this very well. Our model does, too.
This paper provides a detailed description of our model, as well
as evidence showing that it can recover the 3D shape of complex
objects from a wide range of viewing directions. In other words,
it shows that the model can achieve a high degree of shape con-
stancy.1 The model is derived from the traditional Gestalt approach
in which the percept of a 3D shape results from the operation of a
simplicity principle called the ‘‘Law of Prägnanz”. The Gestalt, like
our approach, is ‘‘nativistic”. It assumes that there are built-in, inher-
ited mechanisms, that abstract the shape of a 3D object from its 2D
retinal representation. In this approach, neither learning nor depth
perception have a role in the perception of 3D shape. Once one
makes these assumptions, as we as well as Gestalt psychologists

did, and once one keeps in mind that (i) the human visual system
evolved in a 3D environment in which all objects have some volume
and (ii) most naturally-occurring objects are approximately sym-
metrical, one expects that a successful functional visual system like
ours would both ‘‘know” and use these facts to perceive the shapes
of objects as they are ‘‘out there.” Furthermore, once one adopts this
approach, in which the volume of an object and its symmetry need
not be reconstructed from depth cues, these properties of objects,
as well as the shapes of these objects, can be recovered2 by the appli-
cation of suitable constraints on a single 2D retinal image. Note that
these constraints constitute the new simplicity principle employed
in our model. Almost all previous theories of shape perception were
built on very different assumptions. They assumed that built-in
mechanisms only dealt with the 2D spatial properties of the retinal
image, and that the three-dimensionality of objects and the three-
dimensionality of the environment itself, must be learned and/or
reconstructed.

Our model’s capacity to recover 3D shapes is illustrated in two
demos attached to this paper. DEMO 1 is introduced in Fig. 2,
which shows a snapshot of the demo and provides a link to it.

Right click the mouse on DEMO 1 to see the contents of Fig. 2. A
line drawing of a 3D polyhedral object (Original Object) is shown
on the bottom left. Put your cursor on this 3D Object, depress the
left button, and move it slightly. This will rotate the Original Ob-
ject. Rotating the 3D Original Object allows you to view it from dif-
ferent viewing directions. Note that this 3D Original Object is
opaque despite the fact that only its contours are shown. The sur-
faces enclosed by these contours have not been filled in, that is,
shown explicitly. In other words, the back part of the object is
not visible, its hidden edges have been removed. The 2D drawing
on top (2D Image) represents a ‘‘retinal” image of this 3D object
(an actual retinal image will obviously be smaller than this line
drawing, but its 2D shape will be the same). Note that when you
look at this 2D Image you actually perceive it as the 3D Original
Object shown on the bottom left, viewed from a different direction.
This observation is much more important than it appears to be be-
cause people rarely realize that the visual system is actually recov-
ering a veridical percept of a 3D shape from a single 2D retinal

Fig. 2. Snapshot of the DEMO 1 (http://viper.psych.purdue.edu/~pizlo/li-
demo2.exe). A 3D Original Object is shown on bottom left. One of its 2D Images
is shown on top and a 3D Recovered Object is shown on bottom right. Use the
mouse to rotate the Original or the Recovered Object. The 3D shape of the
Recovered Object is almost identical to the shape of the Original Object despite the
fact that it is seen from a different viewing direction. This means that the model can
achieve shape constancy. (Exit the demo by pressing the ESC key).

Fig. 1. A human silhouette and a circumscribed circle (after Leonardo DaVinci).
(from Pizlo, 2008).

1 Preliminary reports of this work were presented in Li and Pizlo (2007), Pizlo, Li
and Steinman (2006) and Pizlo, Li and Steinman (in press).

2 Our use of the term ‘‘recovery” here, and throughout this paper, rather than the
term ‘‘reconstruction”, was done to call attention to a major difference between our
approach and most prior approaches, many of which were based on Marr’s (1982)
paradigm, in which 3D surfaces, not 3D shapes, are reconstructed from depth cues.
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image under these circumstances. Keep in mind that this recovery
takes place despite the fact that there are no depth cues, whatso-
ever, in the display on your screen. Until very recently, no theory
could explain this remarkable perceptual achievement. Our model
can. Now click the right mouse button. A new, randomly-chosen
2D Image of the same object will appear. It will be obvious that this
new 2D image represents the same 3D object out there. This obser-
vation is important. It demonstrates that you have achieved shape
constancy. You perceived the same shape despite changes in the
shape of its 2D Image.

This demo also allows you to visualize how well our model can
recover the 3D Original Object’s shape from the 2D Image shown
on top. The Recovered Object is shown on the bottom right. Use
your mouse to rotate the Recovered Object so you can see it from
different viewing directions. This will allow you to compare the
model’s recovery of the 3D shape (Recovered Object) to the Origi-
nal Object’s 3D shape shown on the bottom left. Clearly, the Recov-
ered Object’s 3D shape is almost identical to the Original Object’s
3D shape. Note also that the entire shape was recovered, including
the back part of the object that was not visible in the 2D Image
used to recover the 3D shape. Hitting the ENTER key rotates both
the Original and Recovered Object’s shapes, making your compar-
ison of their shapes easy. Now, right-click in order to see the recov-
ered 3D shape from a different 2D image of the same object. This
observation allows you to evaluate how well the model can
achieve shape constancy. If constancy were perfect, its 3D shape
would not change at all. Observers almost always report that the
shape does not change when it is recovered from a different 2D im-
age. In other words, the model’s shape constancy seems to be close
to perfect. Right click a couple of more times to see the recovery for
two more 2D images of the same 3D shape. Right-clicking once
more will repeat the demo with a new polyhedral object. This
demo contains three different 3D Original Objects and each Origi-
nal Object was recovered from six different 2D Images. You can
exit the demo by using the ESC key. Now that you have seen
how well the model recovers the 3D shape from a single 2D image,
and that it can do this from a variety of viewing directions, how
was this done? An overview of the model will be presented first.
This will be followed by a description of the model’s mathematical
and computational details.

The model uses an already ‘‘organized” 2D image of the 3D
shape for its input. In other words, figure-ground organization is
provided to the model because it cannot establish figure-ground
organization by itself. Specifically, the model is given information
about which: (i) points in the image form edges, (ii) edges and ver-
tices in the image form contours of faces ‘‘out there”, (iii) edges and
vertices represent symmetric edges and vertices ‘‘out there”, and
(iv) edges and vertices define volume ‘‘out there”. It is necessary
to provide this information because the a priori constraints that
will be applied by our model are shape constraints. They are called
‘‘symmetry, planarity, maximum compactness and minimum sur-
face.” Symmetry refers to the mirror-symmetry of the object. Pla-
narity refers to the planarity of the contours of the object.
Compactness is defined as V2/S3 where V is the object’s volume
and S is the object’s surface area. Minimum surface is defined as
the minimum of the total surface area. Note that depth cues,
including binocular disparity, are not used in the recovery. They
are not needed. Also note that the symmetry and planarity con-
straints had been used to recover 3D shape before, but the maxi-
mum compactness and minimum surface constraints are entirely
new. They have never been used in a shape recovery model. Max-
imizing compactness is the same as maximizing the volume of an
object, while keeping its surface area constant. It is also the same
as minimizing surface area, while keeping the object’s volume con-
stant. Minimum surface is the same as minimizing the thickness of
the object. Basically, our model’s recovery of 3D shape is accom-

plished by choosing a 3D shape that is as compact and, at the same
time as thin, as possible, from the infinitely large family of 3D sym-
metrical shapes with planar contours consistent with the given 2D
shape. In other words, our recovery of 3D shape is based on a com-
promise between maximum compactness and minimum surface.
As such, this model belongs to the class of regularization models
that solve inverse problems (Poggio, Torre, & Koch, 1985).

2. Mathematical and computational details

2.1. The application of mirror-symmetry and planarity of contours to
shape recovery

Let the X-axis of the 3D coordinate system be horizontal and
orthogonal to the camera’s (or eye’s) visual axis, the Y-axis be ver-
tical, and the Z-axis coincide with the visual axis. Let the XY plane
be the image. Let the set of all possible 3D shapes consistent with a
given 2D orthographic retinal image be expressed as follows:

HI ¼ fpðOÞ ¼ Ig; ð1Þ

where O and I represent the 3D shape and the 2D image, respec-
tively, and p represents an orthographic projection from the 3D
shape to the 2D image.3 There are infinitely many 3D shapes (O) that
can produce the same 2D image (I) because translating any point on
the surface of a 3D shape along the z axis does not change its 2D
orthographic image. Consider a subset of HI, in which all 3D shapes
are mirror symmetric and their contours are planar:

H0I ¼ fO 2 HI : O is symmetric and its contours are planarg: ð2Þ

Following Vetter and Poggio (2002), we will show how symmetry
can be used to restrict the family of 3D interpretations of a given
2D image, but their restriction will not produce a unique 3D shape.
In order to recover a unique 3D shape, additional constraints will be
needed. Given a 2D orthographic image Preal of a transparent mir-
ror-symmetric 3D shape, and assuming that the correspondences
of symmetric points of the 3D shape are known, Vetter & Poggio
showed how to compute a virtual image Pvirtual of the shape:

Pvirtual ¼ D � Preal; ð3Þ

D ¼

0 0 �1 0
0 0 0 1
�1 0 0 0
0 1 0 0

2
6664

3
7775:

Under this transformation, for any symmetric pair of points Pre-

al = [XL YL XR YR]T in the 2D real (given) image, their corresponding pair
of points in the 2D virtual image is Pvirtual = [�XR YR �XL YL]T. The vir-
tual image is another orthographic image that could be produced by
the same 3D shape from another viewing direction. Fig. 3 shows an
example of a 2D real and virtual image of a symmetric wire (trans-
parent) shape. The virtual image is usually different from the real
image. This is not true in degenerate cases, where 2D real image
is itself mirror symmetric. For a symmetric 2D image, the 2D virtual
and the real images are identical (up to a 2D translation) and Vetter
& Poggio’s method cannot be applied.

Note that the 2D virtual image is computed directly from the 2D
real image, without knowledge of the 3D shape, itself. This means
that the original problem of recovering a 3D shape from a single 2D
image is transformed into a problem of recovering a 3D shape from

3 In this paper we use orthographic images of 3D symmetrical shapes. When
perspective images of symmetrical shapes are used, the recovery problem is more
constrained, and thus, easier. Specifically, a single perspective image leads to a unique
shape recovery (e.g., Rothwell, 1995). Despite the mathematical uniqueness,
constraints will still be needed because recovery is likely to be unstable in the
presence of visual noise.

Y. Li et al. / Vision Research 49 (2009) 979–991 981
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two 2D images, real and virtual. Obviously, two images lead to a
more restricted family of 3D recovered shapes. This is the main
idea behind Vetter & Poggio’s method. Next, we explain, how this
3D shape recovery problem is formulated and solved.

The 2D real image can be considered a 2D orthographic image of
the 3D shape at its initial position and orientation. The 2D virtual
image is a 2D image of the same 3D shape after a particular 3D ri-
gid movement. This movement in 3D space can be expressed as
follows:

~v0 ¼ R �~vþ~T: ð4Þ

R is a 3 � 3 rotation matrix and~T is a 3 � 1 translation vector.~v0 and
~v are the corresponding points of the 3D shape at two different posi-
tions and orientations.

A 3D translation does not affect the shape or size of the 2D im-
age in an orthographic projection. Specifically, translations along
the direction orthogonal to the image plane have no effect on the
image, and translations parallel to the image plane result in trans-
lations of the image. It follows that the 3D translation ~T of the
shape can be eliminated by translating the 2D real image or virtual
image, or both, so that one pair of the corresponding points in the
two images, e.g. A and A0 in Fig. 3, coincide. Without restricting
generality, let G be the origin of the coordinate system on the im-
age plane and the 3D points a and a0 whose images are A and A0

coincide with G (it follows that both A and A0 also coincide with
G). Now, the 2D real image can be considered an orthographic pro-
jection of the 3D shape at its original orientation and a 2D virtual
image can be considered an orthographic projection of the 3D
shape after rotation R of the shape around the origin G. This way,
the Eq. (4) takes the simpler form:

~v0i ¼ R �~vi: ð5Þ

Where vi = [Xi, Yi, Zi]T, and v0i ¼ ½X
0
i;Y

0
i; Z
0
i�

T. Eq. (5) can be written as
follows:

X 0i
Y 0i
Z0i

2
64

3
75 ¼

r11 r12 r13

r21 r22 r23

r31 r32 r33

2
64

3
75

Xi

Yi

Zi

2
64

3
75: ð6Þ

Consider the first two elements of the column vector v0i:

X 0i
Y 0i

" #
¼

r11 r12

r21 r22

� �
Xi

Yi

� �
þ

r13

r23

� �
Zi: ð7Þ

In Eq. (7), the points [Xi Yi]T and ½X0iY
0
i�

T in 2D real and virtual images
are known. Huang and Lee (1989) derived the following relation be-
tween [Xi Yi]T, ½X 0iY

0
i�

T and R:

r23X0i � r13Y 0i þ r32Xi � r31Yi ¼ 0: ð8Þ

Let’s put the four elements of the rotation matrix R, which appear in
Eq. (8), in a vector [r23 r13 r32 r31]T. The direction of this vector can be
computed by applying Eq. (8) to the three pairs of corresponding
points in the 2D real and virtual images (e.g., B,D,F and B0D0F0).
The length of this vector can be derived from the constraint that
the rotation matrix is orthonormal:

r2
13 þ r2

23 ¼ r2
31 þ r2

32 ¼ 1� r2
33: ð9Þ

Thus, if r33 is given, [r23 r13 r32 r31]T can be computed from two 2D
images of three pairs of symmetric points. The remaining elements
of the rotation matrix can be computed from the orthonormality of
R. It follows that two orthographic images (real and virtual) deter-
mine R up to one parameter r33 that remains unknown. Note that
once the rotation matrix R is known, the 3D shape can be computed
using Eq. (7). This is accomplished by computing the unknown val-
ues of the Z coordinate for each image point (Xi Yi). Thus, r33 com-
pletely characterizes the family of 3D symmetric shapes that are
consistent with (recovered from) the given image. Usually for each
value of r33, two different rotation matrices are produced because if
[r23 r13 r32 r31]T is the solution, [�r23 �r13 �r32 �r31]T is also a solu-
tion. Consequently, two 3D shapes are recovered for each value of
r33, and these two shapes are related to one another by depth-
reversal.

To summarize, the one-parameter family of 3D symmetric
shapes can be determined from four points (A,B,D and F) in the
2D real image and the corresponding four points (A0,B0,D0 and F‘)
in the 2D virtual image. Recall that the virtual points A0, B0, D0

and F0 have been computed from the real points B, A, C and E. It fol-
lows that the recovery is based on six points A, B, C, D, E and F in
the real image that were produced by three pairs of symmetric
points a,b c,d and e,f in the 3D shape. One real and its correspond-
ing virtual point (here A and A0) are used to undo the 2D transla-
tion. The other three real points (B,D,F) and their corresponding
virtual points B0,D0,F0) are used to compute the rotation matrix
(R). Note that the six points a, b, c, d, e and f cannot be coplanar
in the 3D shape. To guarantee that these six points forming three
pairs of symmetric points are not coplanar in 3D, we only need
to verify that the midpoints (u1 u2 u3) of the orthographic images
of these three pairs of points (the midpoints are marked by open
dots in the real image in Fig. 3) are not collinear:

kðu1 � u2Þ � ðu1 � u3Þk–0: ð10Þ

In some cases, these three symmetric pairs are not coplanar in 3D,
but their midpoints in the image are collinear. This happens when
the viewing direction is parallel to the plane of symmetry of the
3D shape. In such a case, the 3D shape is symmetric with respect
to the YZ plane, and its 2D image is, itself, symmetric. When this
happens, all midpoints of the images of symmetric pairs of points

Fig. 3. The real (left) and virtual (right) images of a 3D symmetric shape. A, B are images of a symmetric pair of points a, b in the 3D shape. A0 and B0 are the corresponding
points in the virtual image. Note that when the virtual image was produced, A0 was obtained (computed) from B. But in the 3D representation, a0 is produced after a 3D rigid
rotation of a. C, D and E, F are images of other two symmetric pairs of points, c, d and e, f. C0 , D0 , E0 and F0 are the corresponding points in the virtual image. The three open dots
in the real image are the midpoints of the three pairs A B, C D, and E F that are images of three pairs ab, cd and ef of symmetric points in the 3D shape.

982 Y. Li et al. / Vision Research 49 (2009) 979–991
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are on the y axis. As a result, the real image and virtual image are
identical and the 3D shape cannot be recovered. So, the fact that
midpoints in the real and virtual images are not collinear implies
that the 3D midpoints are not coplanar and the viewing direction
is not parallel to the plane of symmetry of the 3D shape. Note that
there is another degenerate case that precludes recovery. This oc-
curs when the viewing direction is orthogonal to the plane of sym-
metry of the 3D shape. In this case, each pair of 3D symmetric
points projects to one 2D point and there is not enough information
in the image to perform 3D recovery. Specifically, both r13 and r23

are zero, and the Z-coordinates in Eq. (7) cannot be computed.
We will show how Vetter & Poggio’s method can be generalized

to the shapes of opaque objects before we discuss ways of deter-
mining the value of r33. This will be done in the case of polyhedra.
Shapes of opaque objects are more difficult to recover because
images of such objects provide less information. In extreme cases,
information about some parts of a 3D shape may be completely
missing from the 2D image, which implies (trivially) that the 3D
shape cannot be fully recovered. We restrict discussion to those
2D retinal images that allow full recovery of the 3D shape of an
opaque object. How this was done is described next.

As shown above, in order to compute the rotation matrix R, at
least three pairs of symmetric vertices of a polyhedron must be vis-
ible. Once R is computed, all symmetric pairs whose vertices are
both visible can be recovered from Eq. (7), e.g. the 3D vertices g,
h, m, n and p, q in Fig. 4. These two steps are identical to those de-
scribed above for transparent objects. In the case of the image in
Fig. 4, there are a total of six pairs of such vertices (the solid dots
in Fig. 4). Recovery fails if both symmetric vertices are invisible.
The reason for the failure is that if both [Xi Yi]T and ½X 0iY

0
i�

T are un-
known, Zi cannot be computed. For pairs of symmetric vertices
with one vertex visible and the other occluded, for example, the
symmetric pair u and w in Fig. 4, a planarity constraint can be ap-
plied. In this case, symmetry in conjunction with planarity of the
contours of faces is sufficient to compute the coordinates of both
of these vertices. For example, the planarity of the face gmpu im-
plies that u is on the plane (s) determined by g, m and p. The vertex
u is recovered as an intersection of the face s and the line [ux uy

0]T+k[001]. The hidden counterpart w of u is recovered by reflect-
ing (u) with respect to the symmetry plane of the 3D shape. The
symmetry plane is determined by the midpoints of the three recov-
ered pairs. Fig. 4 shows a real and a virtual image of an opaque
polyhedron that can be recovered completely, that is both the vis-
ible front part and the invisible back part can be recovered. On
average, about 60% of the 2D images allowed a full recovery of
the 3D shapes with the randomly-generated polyhedra we used

and with randomly-generated 3D viewing orientations, Interest-
ingly, once the recovery of an opaque object is possible, the recov-
ery is unique for a given value of r33: the depth-reversed version of
the 3D shape is excluded by the constraint that the invisible vertex
must be behind its visible symmetric counterpart. Recall that for
transparent (wire) shapes, there are always two 3D shapes related
to one another by depth reversal. So, paradoxically, opaque shapes,
which provide less information in the image, are less ambiguous.

Up to this point, we described how the one-parameter family H0I
of 3D shapes is determined. This family is characterized by r33. For
each value of r33, one, or at most two, shapes are recovered. All 3D
shapes from this family project to the same 2D image (the real im-
age). All of them are symmetric and the contours are planar. Be-
cause r33 is an element of a rotation matrix, it is bounded:

H0I ¼ fO ¼ gIðr33Þ : �1 6 r33 6 1g: ð11Þ

Next, we describe two shape constraints, called ‘‘maximum com-
pactness” and ‘‘minimum surface” that are used to determine the
value of the unknown parameter r33. These constraints are new;
they have never been used to model 3D shape recovery.

2.2. The application of the maximum compactness constraint

A 3D compactness C of shape O is defined as follows:

CðOÞ ¼ VðOÞ2

SðOÞ3
; ð12Þ

where V(O) and S(O) are the volume and surface area of the shape O,
respectively. Note that compactness is unit-free, and, thus indepen-
dent of the size of O. Its value depends only on shape. Applying the
maximum compactness constraint recovers a unique 3D shape. Spe-
cifically, selecting the maximally compact 3D shape from the one-
parameter family of 3D shapes recovered by the method based on
Vetter and Poggio (2002) algorithm, leads to a unique 3D shape.
Note that we do not have a proof of our claim that the result of
the recovery is always unique. But, the result was always unique
in our simulations with several thousands of 3D shapes.

Maximizing C(O) corresponds to maximizing the volume of O
for a given surface area, or minimizing surface area of O for a given
volume. Compactness defined in Eq. (12) is a 3D version of the 2D
compactness constraint used in the past for the reconstruction of
surfaces (e.g. Brady & Yuille, 1983). The 2D compactness of a closed
contour is defined as a ratio of the surface’s area enclosed by the
contour to the perimeter, squared. The circle has maximal com-
pactness in the family of 2D shapes. The sphere has maximal com-
pactness in the family of 3D shapes. Recall that the Gestalt

Fig. 4. A real (left) and a virtual (right) image of a 3D symmetric opaque polyhedron. Points G, H, M, N, P, Q and U are images of the 3D vertices g, h, m, n, p, q and u,
respectively. The symmetric pairs gh, mn, pq can be reconstructed from Eq. (7) once the rotation matrix R is known since both points of these pairs are visible. There are six
pairs of such vertices. These pairs are marked by solid dots. The vertex u, which resides on the plane determined by vertices g, m and p, is reconstructed from the planarity
constraint. The invisible symmetric counterpart w of vertex u is obtained by reflecting u with respect to the symmetry plane. There are two such vertices, whose
reconstruction used both symmetry and planarity constraint. These vertices are marked by open dots.
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psychologists considered the circle and the sphere to be the sim-
plest, and therefore, the ‘‘best” shapes (Koffka, 1935). They were
the simplest because they were the most symmetric of all shapes.
The relation between symmetry and compactness was established
formally by the Steiner symmetrization operation (Polya & Szego,
1951).

Note that maximum 3D compactness is a generalization of the
minimum variance of angles constraint used previously to recover
the shapes of polyhedra (Chan, Stevenson, Li, & Pizlo, 2006; Leclerc
& Fischler, 1992; Marill, 1991; Sinha, 1995). The maximum com-
pactness constraint, like the minimum variance of angles con-
straint, ‘‘gives” the 3D object its volume. The minimum variance
of angles constraint is very limited, it only applies to polyhedra.
The maximum compactness is much less confined. It can be ap-
plied to almost any 3D shape.

2.3. The application of the minimum surface constraint

This constraint is quite straightforward. It chooses the 3D object
whose total surface area S(O) is minimal. In other words, the model
maximizes the expression 1/S(O). If there were no other constraint,
the resulting 3D object would be flat, it would have no volume. Re-
call, however, that this constraint will always be applied to objects
that have some volume. This means that the minimum surface
constraint will produce the thinnest possible object, the object
with the smallest range in depth. We already know that maximiz-
ing compactness is useful. Why is making an object as thin as pos-
sible, less than maximally compact, useful? It is useful because it
will allow the veridical recovery of shapes, the way they are ‘‘out
there.” Said technically, recovering a 3D shape, which has the
smallest range in depth, is desirable because it minimizes the sen-
sitivity of the 2D image to rotations of the 3D shape. This makes
the 3D recovered shape most likely. Combining a maximum com-
pactness with a minimum surface constraint will lead to the best
recovery of 3D shapes.

How should these two constraints be combined? Several combi-
nation rules were tried, and the following seems to be optimal:

VðOÞ=SðOÞ3 ð13Þ

That is, our model recovers the 3D shape that maximizes the ratio
defined in Eq. (13). Note that this ratio is the geometric mean of
V2/S3 (compactness) and 1/S3 (minimum surface).

2.4. Robustness in the presence of image noise

The model (described above) assumes that the retinal (or cam-
era) image has no noise, but real images always contain some
noise. How can such image-noise be handled? This becomes an
important question as soon as one wants the model to recover
the 3D shapes of real objects in real environments from their 2D
retinal images. Noise can be handled at three different stages of
the model. First, it can be verified whether pairs of symmetric
points form a set of parallel line segments in the image. In the ab-
sence of noise, they must be parallel because the parallelism of
these lines is invariant in an orthographic projection (Sawada &
Pizlo, 2008). If they are not parallel because of noise and/or be-
cause of uncertainty in the figure-ground organization, their posi-
tions can be changed to make these line segments parallel.
Obviously there will always be some ambiguity about how this
change should be made but it should be possible to do so. For
example, a natural constraint that can remove such ambiguity is
to minimize the sum of squared distances that represent the
change of the positions of the points. In other words, the points
should be moved as little as possible to satisfy the parallelism con-
straint. An alternative way to make the line segments connecting

pairs of symmetric points parallel is to apply a least-squares
approximation at the stage the one-parameter family of 3D sym-
metrical shapes is produced. Note that a least-squares correction,
which makes the line segments parallel, will not ensure the planar-
ity of the faces of the 3D polyhedron. Planarity can be restored at
the very end of the recovery by changing the depths of individual
points. We performed preliminary tests of these three methods
for correcting noise with synthetic images and found that our 3D
shape recovery model was quite robust.

2.5. Testing the model

This section describes a simulation experiment that tested the
model’s capacity to recover 3D shape from a single randomly-cho-
sen 2D image. Current common sense holds that no existing ma-
chine vision system can ‘‘see” shapes as well as humans (Pizlo,
2008). Furthermore, most published studies of human shape per-
ception concluded either that humans do not achieve shape con-
stancy, or that their shape constancy is far from perfect. It
follows from these current commonly-held claims that a computa-
tional model of 3D shape recovery either would not demonstrate
shape constancy, or that shape constancy would be poor if it were
manifested at all. The reader, who has used the demo, already
knows that neither claim can be true. The next section describes
a formal evaluation of the model that confirms the reader’s com-
pelling, informal, subjective observations.

2.5.1. Stimuli
2D images (line drawings) of randomly-generated 3D abstract

shapes like those shown in Fig. 4 were used. Abstract shapes, rather
than shapes of common objects, like chairs, couches or animal
bodies, were used to make it possible to compare our model’s per-
formance with the performance of human observers. Human
observers must be tested with abstract shapes to avoid familiarity
confounds (Chan et al., 2006; Pizlo & Stevenson, 1999). Obviously,
our model, which has no provision for ‘‘learning”, is not subject to
this problem. For the model all stimuli are novel, including those
familiar to humans. Common objects could be used with the mod-
el, but this would make it impossible to compare the human’s and
the model’s performance. The shapes were 2D orthographic images
of opaque 3D symmetric polyhedra (hidden edges were removed).
Only images allowing complete recovery of each 3D opaque poly-
hedron, were used. Sixty percent of the 2D images, produced from
randomly-generated viewing directions, satisfied this requirement.

Every polyhedron had 16 vertices. Their positions were ran-
domly-generated in 3D space with the following constraints: (i)
the object had planar faces, (ii) it had one plane of symmetry,
(iii) the ‘‘front” part of the object was a box smaller than the box
in the ‘‘back”, and (iv) these boxes had a pair of coplanar faces.
The simulation used 100 randomly-generated polyhedra, whose
aspect ratios varied between 1/5 and 5. For each polyhedron a ran-
domly-chosen viewing orientation was used and its orthographic
image was computed. Viewing orientation was random subject
to one constraint, namely the slant of the plane of symmetry of
the 3D object had one of the following five values: 15, 30, 45, 60
and 75 deg. Each slant was used 20 times for a total of 100 images.
The value of slant was controlled to allow the model’s ability to
achieve shape constancy to be evaluated.

2.5.2. Analysis
A quantitative measure of 3D shape was needed to compare the

recovered 3D shape with the original 3D shape. In order to derive
this measure, we first needed to establish the number of parame-
ters that were required to characterize both the original and recov-
ered shapes. The shape of each original polyhedron was
determined by 16 vertices, each vertex having three coordinates.

984 Y. Li et al. / Vision Research 49 (2009) 979–991



Author's personal copy

Only half of the vertices were needed because the polyhedron was
mirror-symmetric. This leads to 24 parameters (8 � 3). The other
half of the object required three parameters to specify the symme-
try plane. But, since 3D position, orientation and size do not affect
3D shape, the 3D shape of the original polyhedron was character-
ized by only 20 parameters (24 + 3 � 7). The actual number of
parameters for all original polyhedra was smaller (15) because of
the planarity constraint. Now, consider the 3D shape of the recov-
ered polyhedron. This polyhedron was also characterized by 15
parameters because it had the same overall 3D structure. Recall
that the recovered 3D shape was obtained from a 2D image that
was produced by the original 3D shape. It follows that the original
and recovered shapes differ with respect to only one parameter,
r33. Thus, the 3D shapes, representing the original polyhedron
and the recovered polyhedron, can be compared simply. Only
one parameter, r33, is needed. But note that this parameter is not
ideal because it is abstract; it is an element of a 3D matrix used
for computations in the model. Unfortunately, no intuitive inter-
pretation of this parameter is available, one that would refer di-
rectly to the 3D shape perceived. Fortunately, there is a
perceptually-relevant parameter that can be used in place of r33,
namely, one of the three aspect ratios of the polyhedron. Specifi-
cally the ratio of its thickness measured in two orthogonal direc-
tions. The ‘‘thickness” of a shape along the direction ~n is defined
as the maximum difference among all vertices along the direction
~n:

T~nI ðOÞ ¼ maxð~vi �~nÞ �minð~vi �~nÞ i ¼ 1;2; . . . ; n

Where~vi is a 3D vertex and n is the number of vertices. The aspect
ratio QI(O) is defined as the ratio of thicknesses along two direc-
tions: one is parallel to the normal of the symmetry plane ~ns and
the other is parallel to the normal of the base face ~nb (see Fig. 5).

Q IðOÞ ¼
T~ns

I ðOÞ
T~nb

I ðOÞ
ð14Þ

This ratio specifies the 3D shapes of our polyhedra uniquely.
Once we know how to measure the original and the recovered

3D shapes, we need a way to compare them. We did this by defin-
ing their similarity. More exactly, the following formula measures
the ‘‘dissimilarity” between shapes O1 and O2:

LIðO1;O2Þ ¼

QIðO1Þ
QIðO2Þ

if Q IðO1Þ > Q IðO2Þ
1 if Q IðO1Þ ¼ Q IðO2Þ O1;O2 2 H0I:
QIðO2Þ
QIðO1Þ

if Q IðO1Þ < Q IðO2Þ

8>><
>>: ð15Þ

The dissimilarity is simply a ratio of aspect ratios of two shapes,
computed in such a way that the result is never less than one. So,
if an aspect ratio of the first shape is 2 and that of the second is
1/2, their dissimilarity is 4. The dissimilarity is also 4 when the as-
pect ratio of the first shape is 1/2 and that of the second shape is 2.
When LI(O1,O2) is equal to one, the two shapes O1 and O2 are
identical.

2.5.3. Results
Fig. 6 shows a scatter plot of the relation between the aspect ra-

tio of the original 3D shape and the aspect ratio recovered by our
model. Different symbols represent different values of slant. Two
facts stand out in this graph. First, the data points representing
individual slant-values form a set of approximately straight lines.
This means that there was a high correlation between the recov-
ered and original aspect ratio for the individual slant-values. The
correlation coefficients range between 0.92 and 0.97. Second, these
straight lines do not coincide. They are shifted relative to one an-
other and stay approximately parallel to the diagonal line. In par-
ticular, the data points for slants 30, 45 and 60 deg, are close to
the diagonal line, the line representing veridical recovery of the as-
pect ratio. Note however, that the data points for the extreme
slant-values, 15 and 75 deg, are farther from the diagonal line indi-
cating that there were systematic errors in the recovered aspect ra-
tio. When these extreme slant-values are included, the overall
correlation coefficient of the recovered and original aspect ratios
is much lower, namely: 0.61.

The effect of the slant of the plane of symmetry on the system-
atic error of the recovered aspect ratio is illustrated more clearly in
Fig. 7. The ordinate shows ‘‘dissimilarity” between the recovered
and original shapes as defined in Eq. (15). Recall that dissimilarity
equal to one means that the recovered aspect ratio is equal to the
original aspect ratio, and that dissimilarity equal to two means that
the recovered and original aspect ratios are different by a factor of
two. The data points represent individual shapes (there were 20
points for each slant). The continuous line represents the median
dissimilarity. The errors were usually small for slant-values 30,
45 and 60 deg. For the extreme slants, 15 and 75 deg, the errors
tended to be larger. However, the overall median dissimilarity
across all slants was 1.4, which means that for half of the recovered

Fig. 5. An illustration of how two directions were used to compute a shape’s aspect ratio. The aspect ratio for each shape (from left to right) is: 1/3, 1 and 3.

Fig. 6. The aspect ratio of the original 3D shape is shown on the ordinate, and the
aspect ratio recovered by the model is shown on the abscissa. Different symbols
represent different slants of the plane of symmetry (15–75 deg).
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shapes, the errors in the aspect ratio were not larger than 40%.
Large errors occur when the 3D object looks like a long rod with
its long axis close to the viewing axis. In such cases, the 2D image
is compact, and, as a result, the recovered 3D shape is less elon-
gated than the original shape. The same was true when a human
observer, rather than the model, recovered the 3D shapes (see be-
low). Note that the model only made errors in one of the 15 param-
eters that characterize the 3D shape. This allows us to say that the
3D shape recovered by the model is always quite accurate even
when there are errors in the aspect ratios recovered.

Why does the model make any errors at all when it recovers 3D
shapes? The answer is simple. A single 2D orthographic image of a
3D shape with a single plane of symmetry can never be sufficient
for completely error-free recovery of this shape. This is why our
model needed more than two, already known, useful constraints,
namely, symmetry and planarity. Our additional constraints, max-
imum compactness and minimum surface area achieved a great
deal. They made it possible to recover the 3D shapes quite well.
The more interesting question is why is the model performing so
well? Apparently, 3D maximum compactness and minimum sur-
face capture some critical aspect of the relation between 3D shapes
and their 2D perspective images. Namely, compact 3D shapes,

never produce non-compact 2D perspective images. For example,
a cube always produces a compact 2D perspective image regard-
less of the viewing direction.4 Conversely, non-compact 3D shapes
rarely produce compact 2D perspective images. For example, a long
rod ‘‘out there” rarely produces very short rod in the 2D image. The
important point to remember is that the recovery of the aspect ratio
is quite accurate for a wide range of compactness and for a wide
range of viewing directions. Even more important, the model’s
recovery of the 3D shape, itself, was very accurate: It made errors
with only one of the 15 parameters used to characterize the 3D
shape!5

2.6. Human observers’ ability to adjust aspect ratios

Our model was tested by examining its recovery of the aspect
ratios and it was found to do so very well. The question now arose
whether the human observers can do this too.

2.6.1. Method
Two authors (Y.L. and Z.P.) and two naïve observers participated

in this experiment. All of them had normal or corrected-to-normal
vision. Each observer was tested with the same 100 images that
were used to test the model. The stimulus subtended 5.7 deg
(5 � 5 cm at the 50 cm viewing distance).

The room was dark and the head was supported by a chin-fore-
head rest. The observer viewed the stimulus with the preferred
eye. In each trial, a 2D orthographic image of a randomly-gener-
ated symmetrical polyhedron was shown for 5 s near the top of a
computer screen. This 2D image led to the percept of a 3D shape.
The observer was asked to remember this 3D shape. Then, the
2D image disappeared and a rotating 3D polyhedron was shown
in the middle of the screen. This rotating polyhedron was selected
from the set of symmetrical 3D polyhedral shapes with planar con-
tours generated by our model from the 2D image that was shown
first. In other words, the 2D orthographic image was the image of
the 3D rotating polyhedron. This 3D polyhedron was rotating in a
random direction at about 90 degrees/s. This allowed many differ-
ent views of the 3D shape to be seen in a short amount of time. The
observer could use a mouse to adjust the aspect ratio of the 3D
shape to make it match the percept of the 3D shape produced by
the stationary 2D image shown at the beginning of the trial. Each

Fig. 7. The effect of slant of the symmetry plane on the error in the aspect ratio
recovered by the model.

Fig. 8. The aspect ratio of the original 3D shape is shown on the ordinate, and the
aspect ratio recovered by a naïve subject (ED) is shown on the abscissa. The same
symbols are used as in Fig. 6.

4 This statement is true in the case of a perspective projection to a spherical retina,
like the retina in the human eye. When the ‘‘retina” is planar, like those in
conventional cameras, this statement is true only when the image is projected to the
center of the retina.

5 It is natural to talk about shape constancy and shape veridicality when the model
or an observer actually looks at a 3D shape. The 3D shape is called the ‘‘distal
stimulus” and it can be compared to the 3D shape recovered (perceived) from a 2D
image. But, the situation is quite different when a single 2D image, shown on a
computer screen, is presented to the model or an observer, the situation studied in
this paper. Which is the distal stimulus under our conditions, the 2D image, itself, or
the 3D shape that was used to produce this 2D image? This question arises because
the 3D shape does not exist physically in our experimental conditions. It only exists in
the memory of the computer that generated a particular 3D shape and then
proceeded to compute its 2D image. The 2D image presented to an observer
determines an infinitely-large family of 3D interpretations. Since this is the case how
is it possible to evaluate its veridicality by choosing one particular 3D shape from this
infinitely-large family of 3D interpretations (this question was raised by Koenderink,
van Doorn, & Kappers, 2006)? This question can be answered as follows: if it is
meaningful to talk about the veridicality of shape when a monocular stationary
observer views a real, stationary 3D shape, it must be meaningful to talk about
veridicality in our case, when the observer is presented with a 2D image on a
computer screen. These two cases are indistinguishable because in both, the observer
is presented with exactly the same 2D information. If the 3D shape percept agrees
with the 3D (non-physical) shape that was used to produce the 2D image, and if the
percept is constant across a number of different viewing orientations, as was
illustrated in DEMO 1, shape constancy and shape veridicality are achieved and are
meaningful.
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trial began with the aspect ratio set to a random value. There was
no time limit for the adjustment.

2.6.2. Results
Fig. 8 shows a scatter plot illustrating the relation between the

aspect ratio of the original 3D shape and the aspect ratio recovered
by one naïve observer (results of the other three observers were
very similar). This scatter plot is quite similar to the scatter plot
of the model shown in Fig. 6. Specifically, for each individual slant
value there was a high correlation between the original aspect ra-
tio and the aspect ratio recovered by the subject (the correlations
ranged between 0.70 and 0.79). Second, there is a systematic effect
of slant on the recovered aspect ratio. These two observations sug-
gest that the observer’s percept would be similar to the model’s if
the model could ‘‘perceive”. The scatter plots of all four subjects are
shown in Fig. 9 to make it possible to evaluate the relation between
the aspect ratio recovered by the model and by the observers more
directly. These graphs show a strong relation between the model’s
and the observer’s recovery: the correlations shown in these four
scatter plots range between 0.76 and 0.87. The correlations be-
tween the model’s and observer’s aspect ratios are very similar
to the correlations between the aspect ratios recovered by any
two of the observers (these inter-subject correlations range be-
tween 0.74 and 0.88). This means that the model can account for
an observer’s results as well as one observer can account for the re-
sults of another observer. In other words, the model can ‘‘explain”
the observer’s percept quite well and it can do this not only when
percepts are veridical, but also when the percept was very different
from the aspect ratio of the original shape. Large differences be-

tween the aspect ratios recovered by the model and by the observ-
ers were very rare. They almost never differed by more than a
factor of two and the median difference between the model and
the observer was equal to a factor of about 1.25 (i.e., 25% difference
in the recovered aspect ratio). To the authors’ knowledge these re-
sults are the very first demonstration in which a computational
model performed as well as a human observer in a 3D shape per-
ception task.

Finally, we evaluated the effect of slant on the errors in the
recovered aspect ratio (see Fig. 10). These relations were similar
to one another, which means that the recovery produced by all four
observers, authors and the naïve observers, were similar. Familiar-
ity with the stimuli and with existing theories of shape perception
did not affect their performance at all. Note that the relations
shown in Fig. 10 are somewhat different from those shown in
Fig. 7. Specifically, the observers’ median dissimilarity for slants
60 and 75 deg was smaller than the model’s. We did simulations
which showed that the model’s performance with these two slants
can match the performance of the observers when maximum com-
pactness (Eq. (12)) is used to recover the 3D shape. This is impor-
tant because our results suggest that the observers used one
constraint, namely the maximum of V/S3 (Eq. (13)), for slants 15,
30 and 45 deg, and another constraint, namely the maximum of
V2/S3 (Eq. (12)), for slants 60 and 75 deg. In other words, the human
visual system ‘‘switched” from using one constraint to the other,
depending on the slant of the symmetry plane of the 3D shape.
In our experiment, making such a switch would require detecting
cases in which the slant of the symmetry plane was close to
90 deg. It is not difficult to imagine how such a detection might

Fig. 9. The aspect ratio of the 3D shape recovered by the model is shown on the ordinate, and the aspect ratio recovered by the subject is shown on the abscissa. The same
symbols are used as in Fig. 6.
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be done despite that fact that we have not yet developed a formal
model that makes such a detection. This detection would require
nothing more than detecting whether the 2D image of a 3D sym-
metrical shape is nearly symmetrical.

3. Concluding remarks

3.1. Shape constancy with real images

Now that we have shown that our model can recover 3D shapes
from 2D synthetic images of abstract and unfamiliar 3D shapes, we
can ask whether the model can recover 3D shapes equally well from
real 2D images of real objects in natural environments. We think
the answer will probably be yes simply because most objects ‘‘out
there” are at least approximately symmetrical. Asymmetrical ob-
jects, with no planar contours and without clearly defined volume
are very rare. Common objects such as animals, buildings, and sofas
are almost always symmetrical and they almost always have con-
tours that are approximately planar. They also almost always have
surfaces enclosing volume. Chairs and tables have little volume that
actually ‘‘belongs” to these objects, but it is easy to ‘‘see” the sur-
faces and volume defined by the legs of chairs and tables. The only
objects that do not have any of the three properties that have been
used in prior studies on shape perception are crumpled pieces of
papers and 3D wire objects. Not surprisingly, shape constancy is
difficult, if possible at all, to achieve with these objects. They do
not have properties that can be processed by our model that uses
symmetry, planarity and maximum compactness constraints. They
also cannot be processed well, if at all, by human observers.

At this point the reader can get an idea about how well our
model can recover ‘‘realistic” natural objects by running DEMO 2
which can be accessed from DEMO 1. Right click the mouse to start
DEMO 2 and an image of a chair will be visible on the lower left.
You can rotate this chair the same way you rotated the 3D polyhe-
dra in DEMO 1, namely, by putting your cursor on the chair, left
clicking and moving your mouse. A 2D image of the chair is shown
at the center top and a dotted version of the Recovered chair is
shown on the bottom right. You can examine the recovered shape
by using the mouse and/or by hitting the ENTER key as you did in
DEMO 1. Note that this chair has little volume. Recovering the 3D
shape of such a chair by maximizing compactness and minimizing
the surface area required using the volume and surface area of the
bottom part of the chair that was defined by its four legs (using the
convex hull of the entire chair would lead to a very similar recov-
ery). Note that with natural objects, like this, their contours are
rarely given explicitly. It follows that with many natural objects
the planarity constraint used in our present model would have to
be replaced by a constraint of approximate planarity and/or a con-
straint of smoothness of surfaces. For the chair recovered in DEMO
2, only the symmetry, maximum compactness and minimum sur-
face constraints were used and the recovery was performed from a
2D image of a dotted 3D chair, circumventing the need for informa-
tion about the chair’s contours.6 Right-click the mouse to recover
the 3D chair from different 2D views. This demo shows that our

Fig. 10. The effect of slant of the symmetry plane on the error in the aspect ratio recovered by the subject.

6 A model developed to handle such natural objects will only need to ‘‘stretch” 3D
surfaces along feature points after the 3D shape is recovered from these points. Note
that these surfaces will come after, not before, the 3D shape is recovered.
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model can recover the 3D shape of this chair from its 2D images and
it also shows that the model can achieve a high degree of shape
constancy.

Once we know that the model can recover 3D shapes of real ob-
jects from real 2D images, we can ask whether the model can
achieve shape constancy with real images of real objects in natural
environments. We think that answer will probably be yes simply
because shapes of real objects tend to be very different from one
another. Small, or even moderate, errors in the 3D shapes recov-
ered are unlikely to permit confusion of one real object with an-
other. A horse will never look like a couch, or a conch, or a coach
from any viewing direction. Furthermore, we already know that
humans achieve shape constancy readily with abstract unfamiliar
objects. We do not know, as this is written, how well they do this
with real images of real objects in natural environments, nor do we
know how our model will fare under such conditions. Finding out
would surely be worthwhile.

3.2. Shape constraints vs. canonical views

Our results showed that views close to what are called ‘‘degen-
erate” or ‘‘nearly degenerate” views, lead to 3D recovered shapes
whose aspect ratio might be very different from the aspect ratio
of the 3D original shape that produced the 2D image. This fact,
and what Palmer calls ‘‘canonical views” deal with an important is-
sue in shape perception (Palmer, Rosch, & Chase, 1981). Namely, it
recognizes that not all views of a 3D shape are equally informative.
Palmer introduced the concept of canonical views (or canonical per-
spective) assuming that 3D shape perception is based on 2D repre-
sentations of 3D shapes. The 2D representations (views) are
memorized by the observer and subsequently used to recognize
3D shapes. This kind of theory assumes that there are only few rep-
resentative 2D views that can be used to establish the shape
through learning.7 It also assumes that one perspective image called
‘‘canonical” is prototypical. It is the best representative of the object’s
shape. These assumptions are incorporated into theories like this be-
cause the observer will not be required to memorize very many 2D
views before he can recognize the 3D object on the basis of a remem-
bered canonical shape. Our model is completely different in that the
perception of a 3D shape reflects the operation of shape constraints
that recover the 3D shape from one of its 2D retinal images. These
constraints are built-in to the organism. There is no need to store
canonical views or to learn anything. Most views of most 3D objects
provide enough information to recover the object’s 3D shape from its
2D retinal image. We do not believe that the concept of canonical
views is either useful or necessary, but we cannot reject the idea com-
pletely before we find out how well our model works with real
images of real objects in natural environments. Resolving this issue
provides an additional reason for finding out how well our model
does with ‘‘realistic” images of ‘‘realistic” objects.

3.3. The role of depth cues in shape perception

What, if any, is the role of cues to depth and surface orienta-
tion, such as binocular disparity, motion, shading or texture, in
the recovery of 3D shape and shape constancy? Note that when
we speak of ‘‘3D shape”, we are referring to the spatially global
properties of objects. Depth cues are quite different. They are spa-
tially local in the sense that they provide information about the
distance of a given point or feature from the observer or about
the local orientation and curvature of the surface of an object.
So, if depth cues are to be used in shape perception, they will

have to provide multiple perceptual measurements at many
points on the 3D object, and the measurements from these multi-
ple points must then be integrated if they are going to be used to
perceive a 3D shape. How good could such an integration be? In
the absence of constraints (priors) for the relations among the
points across spatially separated parts of the 3D object, the indi-
vidual perceptual measurements are likely to be statistically inde-
pendent. It follows that the integration of depths and surface
orientations across multiple points of the object is likely to be
less reliable than the percept of depth or surface orientation at
a single point of the object. It is known that the percept of 3D dis-
tances, angles and aspect ratios are quite unreliable (difference
thresholds are large) and subject to large systematic errors (e.g.,
Johnston, 1991; Norman, Todd, Perotti, & Tittle, 1996; Pizlo & Sal-
ach-Golyska, 1995; Todd & Norman, 2003). It follows that depth
cues, alone, cannot lead to a reliable percept of a 3D shape. For
example, if an observer tried to recover 3D symmetry from depth
cues, the resulting percept will be quite unreliable, and therefore,
not actually symmetrical, unless the symmetry were used as an a
priori constraint. But once symmetry is used as such a constraint,
depth cues become superfluous. They are not needed! The only
place where depth cues could be of some use is in the correction
of the recovered aspect ratio of a 3D shape. Recall that both the
model and the observers sometimes made large errors in recover-
ing an aspect ratio. This happened when the object was highly
non-compact and the viewing direction was nearly parallel to
the long axis of the object (an example of such an object is shown
in Fig. 11). In such cases, employing the maximal compactness
and minimal surface area constraints will lead to a 3D shape that
has substantially less depth than the original shape. This kind of
error could probably be corrected by using binocular disparity or
motion parallax. We have made some informal observations that

Fig. 11. When the visual axis is close to the long axis of this 3D object, the aspect
ratio (depth) of 3D shape recovered from a single 2D image will be substantially
smaller than the actual aspect ratio.

7 This type of theoretical approach goes back at least to Helmholtz (see Pizlo, 2008,
for a detailed treatment of the history of this and other approaches to shape
perception).
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confirm this prediction. Specifically, binocular viewing of a 3D
shape like the one shown in Fig. 11, when the viewing axis is par-
allel to the long axis of this shape, leads to more a veridical per-
cept than monocular viewing.

3.4. Comparison with prior models that made use of shape constraints

Our model of shape recovery was motivated, in part, by prior
computational models based on shape constraints. This approach
started with Biederman, 1987 in which 3D shape perception was
based on volumetric parts (geons) defined by symmetry con-
straints. This approach was picked up by a number of students
of computer graphics and machine vision (Leclerc & Fischler,
1992; Marill, 1991; Sinha, 1995). Surprisingly, they, unlike Bie-
derman, did not use symmetry constraints. They used minimum
variance of angles, planarity of contours, and minimum slant con-
straints instead of symmetry. They were able to recover the
shapes of 3D polyhedra that resembled the shapes perceived by
human observers with these constraints. Chan et al. (2006) con-
tinued this line of research and reported the first psychophysical
evaluation of a shape recovery model based on these as well as
some other constraints. They reported that shape constancy can
be achieved reliably with shapes other than geons. They also re-
ported that depth cues were neither necessary nor sufficient to
achieve shape constancy. Finally, they reported that shape con-
stancy depended critically on the operation of several shape con-
straints, specifically, symmetry, topological relations, minimum
variance of angles, and planarity of contours. Note that all of
these prior models, using shape constraints, had one very impor-
tant limitation. They could only be applied to polyhedra. The model
presented in this paper is the first model of shape recovery based
on shape constraints that can be applied to wide range of 3D
shapes.

3.5. An additional reason for doing the research suggested above

We are contemplating a number of experiments on shape
constancy now that we have a working model for the recovery
of 3D shape from a 2D image. They will address one of the old-
est questions in the history of the subject, namely, what is the
role, if any, of familiarity in shape constancy? Until now, most
perceptionists have assumed that it plays a huge role. As cur-
rently configured, our model does not use familiarity to recover
3D shape and it recovers 3D shape very well. It can, therefore,
be used to assay the role familiarity plays, or may play, in
shape constancy. This can be done by testing both our model
and human observers with both familiar and unfamiliar objects.
A ‘‘familiarity effect” can be measured, as well as demonstrated
by comparing the observers’ achievement of shape constancy
with the model’s.

3.6. Finally

Now that we have a working model that recovers 3D shapes
from a single 2D image, and now that we have specific plans to ex-
tend its range of application to real images of real objects in natural
environments, it is important to emphasize, that a big gap remains
in the knowledge required to accomplish this very ambitious goal.
Our, and similar recovery models, can only operate after figure-
ground organization is established. Human beings do this exceed-
ingly well. Their performance far exceeds our understanding of
how they do it. We have been trying to solve this problem for only
two years. Prof. Spekreijse recognized the significance of the fig-
ure-ground organization problem, and the urgent need to solve
it, more than a decade ago, at a time when most vision researchers
thought that figure-ground organization was in the dustbin of his-

tory where it belonged. Prof. Spekreijse knew better. The research
he and his coworkers published during his last years has provided
us with insights about the mechanisms underlying figure-ground
organization that will help us solve this critical problem. It is sad,
as well as unfortunate, that he will no longer be able to help us
as we try to work this out.
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