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Abstract. We present an approach to figure/ground organization using mirror symmetry as a general purpose and
biologically motivated prior. Psychophysical evidence suggests that the human visual system makes use of symmetry
in producing 3D percepts of objects. 3D symmetry aids in scene organization because (i) almost all objects exhibit
symmetry, and (ii) configurations of objects are not likely to be symmetric unless they share some additional relation-
ship. No general purpose approach is known for solving 3D symmetry correspondence in 2D camera images, because
few invariants exist. Therefore, we present a general purpose method for finding 3D symmetry correspondence by
pairing the problem with the two-view geometry of the binocular correspondence problem. Mirror symmetry is a
spatially global property that is not likely to be lost in the spatially local noise of binocular depth maps. We tested our
approach on a corpus of 180 images collected indoors with a stereo camera system. K-means clustering was used as
a baseline for comparison. The informative nature of the symmetry prior makes it possible to cluster data without a
priori knowledge of which objects may appear in the scene, and without knowing how many objects there are in the
scene.
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1 Introduction

According to most studies of human vision the first step in visual perception is determining whether

there are objects in front of the observer: where they are and how many there are. This step (visual

function) is called figure-ground organization (FGO).1 The computer vision community refers to

this problem as object discovery. As with all natural visual functions of human observers, FGO

operates in 3D space, as opposed to the 2D retinal image. It follows that it is natural to think about

visual mechanisms underlying FGO as based on 3D operations. However, the fact that the input to

the visual system is one or more 2D retinal images encouraged previous researchers to look for a

theory of FGO based on 2D operations. This is how the human vision community studied FGO.

Consider the prototypical example of Edgar Rubin’s vase-faces stimulus.2 In this 2D stimulus there

are two possible interpretations depending on which region is perceived as a “figure” as opposed to
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the “ground”. Similar bistable stimuli have been used during the last several dozen years of FGO

research in human vision.3, 4 This research provided a large body of results, but few theories and

computational models. Furthermore, the proposed models are usually not suitable for real retinal

or camera images representing 3D scenes. The present paper breaks with this tradition and looks

for 3D operations that can establish the correct 3D FGO.

Once we assume that FGO refers to the 3D percept, we have to decide how the transition from

the 2D image to the 3D percept is made. Here we follow the paradigm of inverse problems intro-

duced to vision by Poggio et al.5 According to this paradigm, inferences about 3D scenes, based

on one or more 2D images, must involve a priori constraints (aka priors). Without constraints, the

3D inference problem is ill-posed, because there are infinitely many possible 3D interpretations

that are consistent with any given 2D input. The a priori constraints are imposed on the family of

possible interpretations resulting in a unique and accurate solution. We have already shown how

this works with 3D shape perception.6 Specifically, in 3D shape recovery, 3D symmetry is the

natural prior. This makes sense because most, if not all, natural objects are symmetrical. There is

empirical evidence showing that the human visual system relies on the 3D symmetry constraint.7

The symmetry constraint is responsible for our veridical perception of 3D shapes. By “veridical,”

we mean that we see shapes the way they are out there. In this paper we attempt to extend the op-

eration of a 3D symmetry prior to FGO. Specifically, our theory of FGO is based on the following

observation: almost all natural 3D objects are characterized by one or more types of symmetry,

whereas a 3D configuration of unrelated objects is, itself, almost never symmetrical. In our theory

the detection of symmetries in the 3D scene is equivalent to the detection of objects. There are

as many objects in the scene as there are symmetries. Furthermore, the parameters of the symme-

tries (positions and orientations of the symmetry planes) provide information about the position
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and orientation of the objects in the 3D scene. The next section presents a brief overview of the

symmetry prior.

1.1 The Generality of the Symmetry Prior

Assuming that objects are mirror symmetric may, at first, seem overly restrictive. Most real world

scenes, however, are composed of 3D symmetric objects standing upright on a perceptually flat

surface, such as the floor or simply the ground.6, 8

Mirror-symmetric objects themselves tend to have a natural Cartesian coordinate system: front,

back, left, right, top, and bottom. In a systematic treatment of spatial terms in language, Levinson

referred to these types of object-centric directions as the intrinsic reference frame.9 Cross-cultural

linguistic analysis by Talmy further suggests that these object-centric directions are represented

in mentalese – the native representation of mental information.10 One of us argued that such

a coordinate system exists as a consequence of purely physical properties of the world that we

evolved in.6 For example, it would be very hard for an animal to be physically stable and to move

around if it were not bilaterally symmetric. DNA evidence in the field of molecular phylogenetics

suggests that the first mirror symmetric organisms – the so called bilateria – evolved more than half

a billion years ago,11 and now constitute the vast majority of animal phyla, including the arthropods

(e.g., insects and arachnids) and the chordates: animals with a hollow nerve chord running down

their backs, e.g., sharks, birds, cats, fish, and humans. The few animals that are not bilateria, such

as sponges and jellyfish, still show other forms of symmetry, such as radial symmetry. Symmetry

is, therefore, a natural and general prior and it should be used in 3D vision. The symmetry plane is

usually orthogonal to the ground because that provides the best support against gravity. The cross

product of the ground-normal, up-down, (approximating the direction of gravity) and the normal
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of the symmetry plane, left-right, gives the third intrinsic direction: front-back.

Psychophysical evidence clearly shows that the human visual system makes use of the symme-

try prior in 3D shape recovery.7 Symmetry is also important in shape constancy. Shape constancy

refers to the phenomenon where the perceived shape of an object is constant despite changes in the

shape of the retinal image caused by changes in the 3D viewing direction. Experimental results on

the role of symmetry in shape constancy and shape recovery in humans suggest that symmetry is

an essential characteristic of shape.8, 12

1.2 Related research

Symmetry has already played an important role in computer vision research. This goes back at

least to a landmark 1978 publication by Marr & Nishihara,13 who emphasized the importance of

3D symmetrical shape parts based on Binford’s14 generalized cones. The presence of symmetry in

a 3D object allows derivation of invariants of a 3D to 2D projection (for example Refs. 15–17). 3D

symmetries also facilitate 3D recovery from a single 2D image using multiview geometry.18 There

have been some attempts to use 2D, as opposed to 3D symmetries in image segmentation,19 and

image understanding.20 However, the use of 2D symmetries in computer vision faces fundamental

difficulties simply because a 2D camera image of a 3D symmetrical object is, itself, almost never

symmetrical.

Before a 3D symmetry prior is used to recover 3D shapes, 3D symmetry correspondence must

be solved in the camera image, which itself is 2D and almost never symmetrical. Solving for

symmetry correspondence has been tried for surfaces of revolution, which are characterized by

rotational symmetry21–23 as well as for mirror-symmetrical polyhedral objects, where edge features

are compared with respect to 2D affine similarities (Refs. 24–26). The inherent difficulty of the
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3D symmetry correspondence problem in 2D images has resulted in incremental successes, where

the proposed methods work only for special cases such as nearly degenerate views (for example:

Sinha, Ramnath & Szeliski25). The fact that the projection of a 3D mirror symmetric object into

2D rarely produces a symmetric image is only one part of the difficulty in solving for symmetry

correspondence. An additional problem is that a camera image usually contains multiple objects.

So, one must solve FGO before symmetry is applied to individual objects.

As pointed out in the beginning of this paper, FGO goes by the name of object discovery in

the computer vision community. The state of the art of object discovery in real images makes

extensive use of machine learning, and relies exclusively on 2D features. (For review, see Ref.

27.) The much harder problem of unsupervised object discovery has received comparatively little

attention. In unsupervised object discovery, an algorithm analyzes an image in order to locate and

label previously unseen objects. One approach is to discover the general characteristics of object

categories from regularities in large sets of unlabeled training data. Those categories are then

utilized to discover and locate objects in a set of testing images. For examples, see Refs. 28–32.

This problem is typically considered so hard that most methods rely on at least some form of weak

supervision. For example, Kim & Torralba33 attempted to locate objects (Regions of Interest, ROI)

without training data; however, a small set of initial exemplar ROIs must still be supplied.

While certainly acceptable in the computer vision community, the use of testing and training

data is probably unimportant in human vision.6 Human observers can detect and recover unfamiliar

3D shapes from a single 2D image, and recognize a 3D shape from a novel viewing direction.6

Surely some learning can occur in human vision; an individual can learn and remember what

an object looks like, but learning does not seem to be necessary for detecting 3D objects and

recovering their shapes. Our approach aims at emulating what human observers do: our model does
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not use any training data, and there is no attempt to learn any category information, or regularities

between exemplars. The present approach is not only unsupervised, it also uses an informative and

generally applicable prior, 3D symmetry, in establishing FGO.

Object discovery is more effective when 3D points are available (for example, from stereo

images). In such cases, a typical approach for object discovery is cluster analysis. K-means re-

mains one of the most widely used clustering algorithms even though roughly fifty years have

passed since it was independently discovered in various scientific fields. (For an historical review

see Ref. 34.) Most clustering algorithms require, however, a priori knowledge of the number of

clusters (i.e., objects in the scene), and these algorithms rely on some form of distance metric.

Automatically determining the number of clusters is itself ill-posed, and often requires separate

criteria for what is the “most meaningful” number of clusters. Specifying what is meaningful in a

given application is a key problem which comes in addition to an over-reliance on uninformative

priors, such as density and distance metrics. Our approach is to approximate the ill-posed cluster-

ing problem with a well-posed formulation based on 3D symmetry. Our algorithm uses 3D data

from a binocular camera, however, it is the incorporation of a 3D symmetry prior that transforms

clustering (object discovery) from an ill-posed problem into a well-posed one. The use of 3D sym-

metry can, at least in principle, lead to near perfect performance in FGO – the level of performance

that characterizes human vision in everyday life.

2 Problem Formulation

There is no known way to achieve near-human performance in unsupervised object detection.

Some definition of “object” and “background” is required for such an algorithm. In previous

research, this definition is usually implicit in the clustering of low-level 2D features, such as interest
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Fig 1: A two-view mirror-symmetric quadruple is a set of four 2D points that obey four con-
straints. Pairs of points (p1,p2) and (q1, q2) obey the epipolar constraint in definition 2.2.1: their
y-coordinates are the same. Points (p1, q1) from image 1 and (p2, q2) from image 2 obey definition
2.3.1: they are colinear with the vanishing point. Note that the vanishing point is view-invariant
across both images, and implied by the quadruple. It is not part of the quadruple.

points, in a training set. In this work we use the following psychologically motivated operational

definition of an object in order to formulate the object detection problem:

Definition 2.1 An object’s defining quality is its 3D shape, where shape is defined as a set of mirror

symmetric curves with respect to a common symmetry plane.

Under this definition, polyhedral objects can be detected from a scene by locating one or more

symmetry planes and then finding pairs of points that are mirror symmetric with respect to a par-

ticular symmetry plane. There is no known general purpose algorithm for finding 3D mirror sym-

metric curves in single 2D camera images; however, it is possible to simplify the symmetry corre-

spondence problem by pairing it with the binocular correspondence problem, because the epipolar

geometry of each provide non-overlapping constraints on the solution space. In effect, we simul-

taneously disambiguate each correspondence problem by using the epipolar geometry of the other.

We further simplify the problem by assuming that the objects’ symmetry planes are orthogonal

to the ground. This is typical for most objects which must resist gravity when standing on a flat
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surface. This additional assumption can, however, be removed without changing how the algorithm

works.

2.1 Notation

We use upper-case bold letters, e.g., X , to denote the coordinates of 3D points. Lower-case bold

letters, e.g., x, denote the projection of a 3D point onto the image plane of a camera. Subscripts

are added to lower-case bold letters to identify a particular camera. For example, the projection of

X in the first camera is x1, and in the second camera, x2. A star superscript is used to denote the

homogeneous versions of these points. Therefore X∗ ∈ P3 is the homogeneous representation of

the 3D pointX , and x∗ ∈ P2 is the homogeneous representation of the 2D point x.

2.2 Stereo Correspondence

We use a pinhole camera model for each of a pair of calibrated cameras with identical intrinsic

parameters, and with neither skew nor radial distortion. The center of camera 1 is located at the

origin of the world coordinate system, C1 = (0, 0, 0)>, and the center of camera 2 lies on the x-

axis at C2 = (δx, 0, 0)
>, where δx is the distance between the two cameras. The principal rays of

the cameras are parallel and pointing down the negative z-axis. Stereo rectification is unnecessary

under these assumptions, and we can define the epipolar geometry for the two-view camera system

according to the following definition:

Definition 2.2.1 Let the ideal point e1∗ = (1, 0, 0) be the image of C2 in camera 1, and the ideal

point e2∗ = (−1, 0, 0) be the image of C1 in camera 2. Then the corresponding lines between the

two images are the horizontal scan-lines with identical y-coordinates. Thus for all 3D points Z we

have z1y = z2y.
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2.3 Symmetry Correspondence

A pair of 3D points,P andQ are mirror symmetric about a plane of symmetry,π = (nx, ny, nz, d)
> =

(n>, d)>, if the plane of symmetry bisects a line segment connecting these two points. This, in

turn implies the following two equations: (1), the two points are equidistant from the symmetry

plane, and (2), the line joining the two points is parallel to the normal of the symmetry plane.

P +Q

2
· n+ d = 0 (1)

(P −Q)× n = 0 (2)

We refer to the normal of the symmetry plane, n, as the direction of symmetry. Without loss

of generality assume that n is a unit normal. In this case d is scaled to the units of the coordinate

system.

The plane of symmetry π defines its own epipolar geometry as given in definition 2.3.1.

Definition 2.3.1 The vanishing point of the 3D symmetry lines is isomorphic with the direction of

symmetry. Let n be a direction of symmetry for an object. When extended to infinity, the projec-

tion of all 3D lines parallel to n meet at a vanishing point vn.

The vanishing point in definition 2.3.1 is commonly referred to as the epipole of the symme-

try plane, and the lines passing through the epipole as the epipolar lines. To avoid a conflict of

terminology between the binocular and mirror-symmetric epipolar geometries, we simply refer to

the symmetry plane’s epipole as the vanishing point, and the epipolar lines as the pencil of lines
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through the vanishing point. This pencil of lines is used to constrain symmetry correspondence in

a single image, as described in property 2.3.1.

Property 2.3.1 If p and q are images of 3D points P and Q symmetric about π = (n>, d)> with

direction of symmetry n, then p and q are colinear with the vanishing point vn, which is defined

by the direction of symmetry. See Ref. 35.

2.4 Combined Correspondences

Each of the two correspondence problems involves a pair of image points that must obey the geo-

metrical constraints of the specified problem. In the binocular correspondence problem, according

to definition 2.2.1, pairs of points, one from each image, must have the same y-coordinate. In

the symmetry correspondence problem, according to definition 2.3.1, pairs of points from a single

image must be colinear with the vanishing point vn defined by the direction of symmetry. These

two problems are combined by choosing two points, p1 and q1 from the first image, and two points

p2 and q2 from the second image. A set of four such points is called a two-view mirror-symmetric

quadruple, or simply quadruple for short. Figure 1 shows such a quadruple and the constraints that

they obey. All objects under definition 2.1 are composed of these quadruples.

Note that because there is no rotation between the two cameras in our simplified two-view

geometry, the direction of symmetry is identical with respect to both cameras, and thus so is the

vanishing point.
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2.5 3D reconstruction based on symmetry

Given a vanishing point vn, it is possible to reconstruct the 3D locations of points P and Q from

their images p and q. Figure 2 below shows the geometry of this situation. The vanishing point

resides on the image plane and has 3D coordinates (vx, vy, f). Without loss of generality, assume

that the camera centre, C, is at the origin, (0, 0, 0). In this case, (vx, vy, f) is, itself, the direction

of symmetry. That means that the camera image of all the points on 3D rays parallel to (vx, vy, f)

will form lines that intersect at vn.36

x-axis

z-axis

focal length

P

Q

M

p q v

C

Fig 2: The imaged points p and q, along with the vanishing point v define the location of 3D points
P and Q up to scale. The symmetry plane can be written as π = (vx, vy, f, d)

>, where d locates
the plane, and thus the point M = 1

2
(P + Q) which lies on the plane. The vector (P − Q) is

parallel to the direction of symmetry, creating a triangle that constrains the ratio of the lengths of
the vectors ‖P ‖ and ‖Q‖, allowing for 3D reconstruction, as specified by equations 3, 4, and 5.

The vector (vx, vy, f) is also the normal to the plane of symmetry that divides points P andQ

at midpointM . Therefore the plane of symmetry can be written as π = (vx, vy, f, d)
>, where d is
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a free parameter that locates the plane of symmetry and scales the size of the reconstructed object.

By construction, the points P and Q must lie on rays emanating from the camera centre C

through the imaged points p and q. Given the intrinsic camera matrix K, let p̂ = K−1p∗

‖K−1p∗‖ , and

q̂ = K−1q∗

‖K−1q∗‖ be unit vectors in R3 that intersect the image plane at the desired points. We can then

rewrite P andQ according to equation 3.

P = ‖P ‖p̂ and Q = ‖Q‖q̂ (3)

Let v̂ = K−1vn
∗

‖K−1vn
∗‖ be the unit vector that intersects the image plane at the vanishing point vn.

Now let θ = cos−1(v̂>p̂) be the angle between v̂ and p̂, and φ = cos−1(v̂>q̂) be the angle between

v̂ and q̂. Then the ratio of ‖P ‖ to ‖Q‖ is given by equation 4.

‖P ‖
‖Q‖

=
sinφ

sinθ
(4)

This can be seen by construction. Referring to figure 2, let λ be the distance from the origin,

to the line through P and Q. Then by definition, sinθ = λ
‖P ‖ , and sinφ = λ

‖Q‖ . Taking the ratio

gives equation 4.

To solve for P andQ, all that remains is to find the distance to one of the two points, and then

substitute into equation 4 for the other. Note that P and Q are equidistant to the symmetry plane,

giving P>vn +Q>vn = 2d. Substituting into equations 3 and 4 gives the equation:

‖P ‖ = 2d

p̂>vn + sinθ
sinφ

q̂>vn
(5)
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2.6 Using the Floor Prior

Every quadruple is consistent with a vanishing point as follows: find the point of intersection

between the line going through p1 q1, and the line going through p2 q2. By definition, this point is

colinear with both pairs of points, and therefore can be chosen provisionally as a vanishing point.

Noting that, in homogeneous coordinates, the cross product of two points is the line going through

them, and the cross product of two lines is the point of intersection, we have the equation for the

vanishing point:

v∗ = (p∗1 × q∗1)× (p∗2 × q∗2) (6)

As shown in equation 5, a vanishing point and a pair of points from one image is sufficient for

reconstruction. Although subject to more error from image quantization, triangulation36 can also

be used to locate 3D points P andQ.

The floor prior can be used to define a restricted set of consistent quadruples. As previously

pointed out, if symmetrical objects are standing on a flat surface, or floor, then the direction of

symmetry will be in the 1-dimensional complementary subspace orthogonal to the floor normal.

The projection of this subspace is the horizon line and it is isomorphic to the floor plane’s normal.

With this prior, it is possible to determine the vanishing point for a pair of mirror symmetric

points p and q in a single image. Let g be the normal to the floor, which is suggestive of the direc-

tion of gravity. g defines a line in homogeneous coordinates in the standard way (the intersection

of the image plane with the plane parallel to the floor which passes through the camera center),

and is called the horizon line. The vanishing point must be the point of intersection between the
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horizon line and the line passing through points p and q.

v∗ = g × p∗ × q∗ (7)

Note, there is a degenerate case when P ,Q, and the camera centreC lie on a plane parallel to

the floor plane. In this situation g = p∗ × q∗, and the vanishing point is underdetermined.

We can now determine if a two-view mirror-symmetric quadruple has a vanishing point that

is consistent with an object standing on the floor. The estimate of v from equation 6 can entail

substantial quantization error if pixels p1 and q1, or p2 and q2 are close to each other. For this

reason, the vanishing point is estimated from the image where p and q are most distant, and a

colinearity test is used to determine if the quadruple is consistent with the horizon defined by the

floor normal.

Definition 2.6.1 A two-view mirror symmetric quadruple is consistent with the floor prior if there

exists a vanishing point on the horizon line (defined by the normal to the floor) that is colinear both

with p1, q1, and with p2, q2. A pair of points are considered colinear with the vanishing point if

a line through the vanishing point exists such that the minimum point-line distance for both points

is less than a threshold.

3 System Architecture

Input is a pair of stereo gray-scale images captured from a Point Grey Bumbleebee2 R© two-view

camera system. A disparity map is calculated using the Sum of Absolute Differences, according to
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a propriety algorithm in the Triclops R© 2.5 SDK, as published by Point Grey. The right image is

used as the reference image for the disparity map.

The input images are smoothed with a Gaussian kernel before applying the canny operator

with an adaptive threshold for hysteresis. The high threshold is automatically set to the average of

the orientation magnitude at each pixel, as produced by the Sobel operators. The low threshold is

automatically set to be 0.4 times the high threshold. A sparse disparity map is then produced by

taking those disparity values from the disparity map which also register an edge in the edge maps

for both images – within a pixel of error to account for quantization effects. The sparse disparity

map gives corresponding pairs according to texture in the input image, but along identified edges

in the image.

3.1 Estimating the Floor

Triangulation36 is used to generate a point cloud from the disparity values. RANSAC is applied

to find a 3D plane hypothesis that covers the maximal number of points, following a procedure

outlined in Ref. 37. The normal to this plane is the estimate for g. The floor points are then

removed from analysis. The remaining sections below only consider non-floor points that are on

identified edges in the image.

3.2 Finding Object Hypotheses

Two-view mirror-symmetric quadruples are defined as pairs of disparity map values from the sparse

disparity map. A region of interest for symmetry correspondence is used to avoid searching through

O(n2) pairs of disparity values. The set of floor-consistent quadruples, as per definition 2.6.1, are

calculated from all pairs of disparity map values within the region of interest. All detected objects
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are subsets of these floor-consistent quadruples.

Segmentation of the scene proceeds by finding symmetry planes that produce spatially local

clusters of quadruples – or objects according to definition 2.1. A single quadruple can be used to

estimate all parameters of an object’s symmetry plane, π = (n>d)>. n, the direction of symmetry,

is calculated as per equation 7. A point on the symmetry plane is required to estimate d. In this

case P andQ are estimated using triangulation, and d is obtained as:

d = −1

2
(P +Q)>n (8)

3.3 Finding Inliers for a Hypothesis

It is possible to find all quadruple “inliers” for a given symmetry plane hypothesis, π = (n>d)>, by

examining the reprojection error of the four points in each quadruple as follows. First reconstruct

3D points P and Q from p1 and q1 by using the symmetry prior (equation 5). These 3D points

are then reprojected into both image planes, as per equations 9 and 10, where δ is the distance

between the two camera centers, and p̂1 is the reprojection of P in the first image plane and p̂2 in

the second image plane.

p̂1 =
f

Pz
(Px, Py)

> (9)

p̂2 =
f

Pz
(Px + δ, Py)

> (10)
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The reprojection error of both reconstructed 3D points is then given by equation 11.

reprojection errorP = ||p̂1 − p1||+ ||p̂2 − p2|| (11)

If the reprojection error of both P andQ are below a specified threshold then the quadruple is

considered an inlier to the object hypothesis.

An additional parameter, the “maximum object size” is used to alleviate noise from spatially

distant quadruples that happen to be inliers to the object hypothesis. Recall that a point on the

symmetry plane is calculated to get the d parameter in equation 8. A quadruple is considered an

inlier only if both P and Q are within a specified distance to this initial point on the symmetry

plane. This specified distance sets the expected maximum size of an object.

Note that if the symmetric reconstruction (equation 5) is performed on p1 and q1, then p̂1 = p1,

and q̂1 = q1, and the reprojection error for these points is zero. However, points P and Q will

be different than those computed from binocular disparities via triangulation. In particular, the

distances betweenP ,Q, and the camera center, are noisy in triangulation because of a combination

of pixelation and the large ratio of the reconstructed depth to the distance between the camera

centers. Equation 5 does not have this defect, and corrects the binocular reconstruction. Put

differently, 3D symmetry allows for subpixel binocular reconstruction.

3.4 Non-linear Optimization of Hypotheses

Each symmetry plane has four parameters, π = (n>d)>, but only two degrees of freedom. The

direction of symmetry, n is a unit normal, but it only has one degree of freedom because it must

be orthogonal to the floor normal, as specified in equation 7. Nelder-Mead38 is then used over this
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two-dimensional subspace to find the symmetry plane parameters that maximize the number of

quadruple inliers.

3.5 Choosing Non-overlapping Hypotheses

The steps outlined above generate a single object hypothesis. In a procedure similar to RANSAC,

we can create an arbitrary number of hypotheses. (The precise number is given in section 3.6.)

Many of these hypotheses overlap spatially and must be discarded; however, choosing a maximal

non-overlapping subset of object hypotheses is NP-hard. Branch & bound39 was used to accom-

plish this step.

Let S be the set of initial object hypotheses generated according to the steps outlined above.

Let |s| be the number of quadruples in a given object hypothesis, s ∈ S. Then branch & bound is

used to find the optimal set of hypotheses, S ′ ⊆ S, as described by equation 12.

S
′
= argmax

S′⊆S

∑
s∈S′
|s| where intersect(si, sj) = 0 ∀si, sj ∈ S

′
, i 6= j. (12)

An important detail is calculating the spatial intersection between two object hypotheses:

intersect(si, sj). Using the normal to the floor plane, we calculated the orthographic pro-

jection of each hypothesis onto the floor, and then found the 2D convex hull for the projected

points. This convex hull is a 2D polygon representing the image of the object hypothesis on the

floor. Two object hypotheses were considered overlapping if their 2D hulls overlapped.

3.6 Algorithm Parameters

The following parameters are used in the clustering algorithm.

18



Gaussian smoothing σ = 2.0

ROI in search for quadruples 150 pixels

Colinearity test threshold 1.5 pixels

Quadruple inlier test 1.5 pixels

Maximum size of object 1.0 meter

Number of object hypotheses 80

These parameters were chosen based on features of the algorithm. Object size is the exception,

and was set to be about 50% larger than the expected size of the largest object in clustering.

4 Experimental Results

The novelty of our approach makes it difficult to compare our algorithm to existing techniques. Un-

supervised object localization is a form of unsupervised clustering, which our algorithm performs

using symmetry as an informative prior. Therefore we considered it appropriate to compare our

results to K-means because of its long history, and the typical usage of distance metrics for most

data clustering techniques. Thus, we tested mirror symmetry clustering – as an informative prior

for object localization – against K-means, a benchmark method based solely on spatial clustering.

A corpus was acquired to perform a comparison. 180 pairs of 1024x768 grayscale images

were captured under normal indoor lighting conditions using a Point Grey Bumblebee2 R© stereo

camera with a 12cm baseline, and a 66◦ horizontal field of view. Five to ten objects were featured

in each scene (a room), where the objects were mostly polyhedral objects: toys, childrens furniture,

a pram, a vacuum cleaner, and a tripod. 75 images featured a person. The floor was covered by

uniformly colored carpet.
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As described in section 3.1, our symmetry based approach to object localization relies on esti-

mating the plane of the floor. For this estimate to be reliable, there must be sufficient samples of

floor patches available in the images. Since the points on the floor are removed from further anal-

ysis, the type of texture on the floor is unimportant. Furthermore, our approach relies on binocular

disparity information in order to solve the symmetry correspondence problem, as discussed in sec-

tion 2.4. When the objects are too far from the camera, then the stereo system degenerates to

single view geometry. For example, an object 0.3 meters deep, placed 4 meters from our stereo

camera setup, has only 2 pixels of disparity difference between front and back. Therefore, when

constructing the corpus, objects were placed between 1.5 and 4.5 meters from the stereo camera.

2D ground truth was specified as a set of bounding rectangles in the left-camera-image of each

pair of images. Each bounding rectangle was drawn by hand around the regions containing the

individual exemplars. The rectangles were axis-aligned such that they have horizontal and vertical

edges.

4.1 K-Means

Since mirror symmetry is calculated in 3D, we applied K-means clustering to an unstructured

3D point-cloud. A disparity map was calculated as per section 3 of this paper. The symmetry

based algorithm only considered binocular correspondences that coincided with the canny edge

maps generated from each image. This sparse point cloud was used to reduce the search space for

symmetrical correspondences; however, it also reduces noise from texture-based artifacts typical

in stereo reconstructions. In order to do a fair comparison we restricted the “K-means” point cloud

to the same set of 3D points that were used to generate two-view mirror symmetry quadruples. The

method described by Caliński & Harabasz40 was used to automatically determine the value of K:
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the number of objects in the image. Once clusters were determined, the 3D points were projected

back to the image plane of the left camera, and bounding rectangles with horizontal and vertical

sides were calculated.

4.2 Comparison Function

Bounding rectangles were compared as follows. Intersection-over-union41 (equation 13) was used

to calculate the best matches between all rectangles representing an algorithm’s output and all

ground truth rectangles. The best matching pair of rectangles were paired together first, and then

removed from analysis. This procedure was repeated recursively until all ground truth rectangles

were matched.

intersection over union(A,B) =
area(A ∩B)

area(A ∪B)
(13)

We averaged the scores for each image. Our method for scoring each image does not produce

a penalty for estimating too many objects; however, if the algorithm estimated that there were too

few objects, then some ground truth rectangles were scored as zero. As will be seen below, this fact

favored, on average, K-means clustering. It follows that the observed superiority of our method in

this analysis is a conservative estimate.

We also calculated F1 statistics using the following labeling procedure. All rectangles were

labeled as either true positives (TP) or false positives (FP), where a true positive was recorded

if intersection-over-union with a ground-truth rectangle was greater than 0.5. If a ground truth

rectangle was not paired with a true positive object hypothesis, then it was labeled as a false
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negative (FN). F1 is then calculated according to equation 14.

F1 =
2TP

2TP+ FN+ FP
(14)

4.3 K-Means versus Symmetry Based Object Localization

Bounding rectangles for 3 representative examples are shown in Figure 3. In Figure 4 we show

a histogram of the ratios of mean scores, as defined by equation 13, for our algorithm and for

K-means across all 180 scenes. Ratios greater than 1 imply that our algorithm performed better.

Most ratios are greater than 1 indicating that our algorithm did perform better. We want to

point out, however, that K-means also performed reasonably well. This good performance is partly

the result of eliminating spurious 3D points in the front-end of our method, where we reconstruct

only those 3D points that represent binocular correspondences for both texture patches and edges

(see section 4.1). However, since the K-means method relies solely on a distance metric, it seems

to produce localizations that bleed over multiple scene objects when the objects are close together

in 3D. The symmetry based method is much more robust in this circumstance. Both methods work

well if the objects are far apart from each other in 3D, even if one occludes the other in the camera

images.

The symmetry based clustering also performed better than Caliński & Harabasz’s method for

determining the number of clusters. A comparison of the number of clusters detected between the

two methods is given in Figure 5. In this figure we see that the Caliński & Harabasz heuristic

tends to overestimate the numbers of objects (clusters) in the scenes. In contrast, symmetry based

clustering tends to be more accurate, and to slightly underestimate the numbers of objects in the

scenes.
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K-Means Symmetry Based Clustering

Fig 3: Representative results comparing K-means (left column) to symmetry based object local-
ization (right column).
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Fig 4: Histogram of the ratio of mean intersection-over-union of bounding rectangles for each
image. A ratio of 1.0 implies that symmetry based clustering (SBC) and K-means performed
equally well. Greater than 1.0 implies that SBC performed better.

Note, as described in section 4, the corpus was designed with mostly polyhedral objects placed

close enough to the stereo camera such that symmetry correspondence could be solved from dis-

parity information. Furthermore, as described in section 3.1, we constrained the symmetry plane

to be orthogonal to the estimated floor plane – and the floor was clearly visible in every corpus

image. The results reflect these controlled experimental conditions. In the conclusions section we

discuss how to relax these constraints in order to develop a general purpose approach to symmetry

based object localization.

4.4 Runtime Performance of Symmetry Based Object Localization

Runtime performance for the symmetry based technique was dominated by the final branch &

bound step. After generating multiple overlapping object hypotheses, branch & bound was used to

find a maximal set of non-overlapping objects, as described in section 3.5. The speed of this step
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Fig 5: The difference between the number of clusters detected by symmetry based clustering
(SBC), or by Caliński & Harabasz’s method for determining K in K-means, and the actual number
of objects. Zero error implies that a method detected the correct number of clusters (objects). Posi-
tive error means that a method detected more clusters than there were objects in the scene. Caliński
& Harabasz shows a bias toward reporting too many objects under the experimental conditions.
SBC is both more accurate, and slightly conservative, in its estimates of numbers of objects.

is determined by the ability of branch & bound to quickly find a good upper bound to equation 12,

thereby allowing it to splice away exponentially sized chunks of the search space. As such, it is

crucial to test the most promising hypotheses first, where object hypotheses are ordered according

to the number of quadruples they contained. This approach was usually good enough to find an

optimal set of non-overlapping objects without recourse to some form of non-maximal suppression.

In our initial experiments, however, we found that the branch & bound step would occasion-

ally run for hours on cluttered input images. Thus we experimented with a simple mechanism

that returned the best (sub-optimal) result after 30 minutes, about double the median time for the

exhaustive search, in order to assess its effect on accuracy. Table 1 shows the F1 score for the

testing corpus, with and without timeout. We see that when the timeout was not used, both runtime
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and performance (as measured by F1 score) increase as more hypotheses are generated. There is

little effect of timeout, except for when the number of input hypotheses is large. Under the given

experimental conditions, 80 hypotheses with 30 minute timeout gives near best performance for

this method (F1 = 0.83), with median runtime 6.55 minutes, and runtime bounded to 30 minutes.

There is another way to speed-up the processing time. In our experiment the scene contained

images of multiple objects, each object occupying only a fraction of the camera image. It follows

that the entire image could be divided into several smaller regions and our algorithm could then

be applied to individual regions, one by one. Considering the NP-hard nature of our algorithm,

the sum of processing times of smaller problems (regions) is likely to be less than the processing

time of solving the entire problem (analyzing the entire image). What we are describing is the

essence of divide and concur approach that has been used in many applications in the past. In

order to evaluate how well this approach would work in our application, we looked at our results

separately for the scenes containing 5 objects, 6 objects and so on. For 5 objects in the scene, 40

hypotheses led to precision F1 = 0.87 with the median runtime 0.6 minutes and max runtime 1.3

min (see Table 2). Compare this to 10 objects in the scene. Ten objects required 320 hypotheses

in order to produce F1 = 0.88, but the resulting median time was 31 minutes and max runtime

almost 12 hours. Clearly, detecting 5 objects at a time in a scene containing 10 objects would

lead to substantially smaller runtime, compared to the case of detecting all 10 objects at once.

This observation is not surprising, but it does suggest that our algorithm could use what is referred

to in human vision literature as visual attention.42 Directing visual attention towards particular

regions in the image requires additional computational tools, such as saliency measures. There

are a number of saliency measures in the literature, as well as models of visual search using eye

movements. Our future work will examine these aspects of vision with the purpose of bringing
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# Hypotheses Timeout Optimal Runtime (min, median, max) minutes
10 0.33 0.30 0.09 0.29 0.83
20 0.58 0.58 0.16 0.47 1.46
40 0.75 0.76 0.40 1.08 2.96
80 0.83 0.83 1.89 6.55 1986.35
160 0.87 0.89 3.74 11.12 613.52
320 0.60 0.90 4.76 16.29 2111.52

Table 1: F1 with and without timeout. Timeout means that the algorithm returned the best result
after 30 minutes of computation. Optimal means that the branch & bound step ran to completion,
giving the optimal result. The given runtimes are for the optimal condition. The timeout did affect
performance when the number of input hypotheses was large.

Table 2.A F1 and runtime for 40 input hypotheses.

# Objects F1 Runtime (min, median, max) minutes
5 0.87 0.40 0.61 1.34
6 0.81 0.46 0.83 1.83
7 0.82 0.55 1.09 2.16
8 0.70 0.91 1.26 2.58
9 0.74 0.86 1.42 2.87
10 0.65 0.83 1.40 2.96

Table 2.B F1 and runtime for 320 input hypotheses.

# Objects F1 Runtime (min, median, max) minutes
5 0.90 4.76 7.40 18.52
6 0.91 5.06 10.80 22.25
7 0.91 8.01 14.94 1117.42
8 0.93 10.86 16.63 308.10
9 0.89 13.89 25.24 2111.52
10 0.88 17.14 31.04 713.11

Table 2: F1 and runtime as a function of the number of objects in a scene, for 40 (Table 2.A), and
320 (Table 2.B) input hypotheses, and with branch & bound running until completion. We see that
runtime is much faster for fewer objects, suggesting that overall performance can be improved by
adopting a divide and conquer approach.

our model of figure-ground organization closer to real time performance – the kind of performance

that characterizes human vision.
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5 Conclusions and Future Work

Our results suggest that the biologically motivated symmetry prior is useful in FGO (object local-

ization). In a sense these results are not surprising because our new method is based on a straight-

forward rational argument, namely, that 3D symmetries uniquely identify 3D objects. Intuitively

this argument makes a lot of sense, and insofar as there is a method for detecting 3D symmetries

in a scene then the resulting FGO should be reliable. Our results support this claim; however, we

believe that progress can be made by improving the front end of our model, where 3D symmetry

is detected. A few suggestions for future research are listed below.

Firstly, this experiment uses a rudimentary definition of shape: definition 2.1. If an object’s

symmetries provide the informed prior that makes accurate FGO possible, then it stands to reason

that a richer definition of an object’s symmetries would produce even better results. In particular,

individual object hypotheses would become more constrained, and more likely to appeal to the

human intuition for shape. This, in turn, would prune the search space that the branch & bound

step must traverse to find the optimal set of non-overlapping objects, thus improving the speed

of the algorithm as well. Any heuristical method for finding non-overlapping objects should also

benefit from a richer definition of shape as well.

Secondly, humans are able to solve the 3D symmetry correspondence problem from single 2D

images, but how this occurs is currently a topic of active research.43 Solving for object localization

from single images would widen the practical applications of this approach. This is especially so

for uncalibrated cameras, since a 3D aware approach to object localization could be used in general

image databases, presenting a significant advance over the state of the art.

Thirdly, the procedure presented was designed and tested on mostly polyhedral objects, but this
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approach should be extended to smoothly curved surfaces. Polyhedral objects tend to have well

defined edges in the binary edge maps produced by the canny operator. Importantly, these edges are

sufficient for recovering the symmetry of the object. This simplifies the symmetry correspondence

problem to searching for pairs of points on a binary edge map; however, such an approach may not

work well with smooth surfaces. Our results show that “round” structures, such as people, can be

localized using symmetry applied to binary edgemaps; however, this is a preliminary result, and it

is unknown, for example, how well individual people can be localized in a crowd.

Note that once FGO is solved, the individual objects can be used as a saliency map to direct

the “attention” of further processing steps. The topic of saliency maps was started 30 years ago44

and remains an active field today. Symmetry based FGO should be useful to researchers who are

interested in finding relationships between objects, and building event models for scenes, which is

sometimes considered part of the vision problem.42 In turn, higher level reasoning about a scene

could disambiguate a symmetry based FGO approach. For example, a symmetrical collection of

tables and chairs in a classroom could be considered as one object or many, depending on how the

information needs to be used by an event model for the scene. Thus we are proposing that attention

and saliency could work on two levels: as the front end to divide the image into subregions for

solving FGO and later, after FGO is solved, to focus subsequent analyses on particular objects

and groups of objects. This double status of attention may correspond to the “what” and “where”

pathways in the human visual system.45

We believe that detecting and using 3D symmetry is an essential step in visual processing,

because psychophysical experiments have already shown that symmetry is a powerful prior used

by the human vision system in a variety of unsolved vision applications, such as figure-ground

organization, 3D shape recovery, and shape constancy.6 Although the present work is preliminary,

29



our experiment suggests an avenue towards bridging the divide between human and computer

performance on object localization.
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