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ABSTRACT 
 

We present a new algorithm for reconstructing 3D shapes.  The algorithm takes one 2D image of a 3D shape and 
reconstructs the 3D shape by applying a priori constraints: symmetry, planarity and compactness.  The shape is 
reconstructed without using information about the surfaces, such as shading, texture, binocular disparity or motion.  
Performance of the algorithm is illustrated on symmetric polyhedra, but the algorithm can be applied to a very wide 
range of shapes.  Psychophysical plausibility of the algorithm is discussed. 
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INTRODUCTION 
 

The problem of veridical perception of a 3D scene based on one or more 2D images is computationally difficult.  
Despite this difficulty, the human visual system solves this problem quickly and accurately.  There have been a number 
of approaches to explain and model this ability.  So far, all these efforts failed.  The best known is the approach by 
David Marr [1].  Marr assumed that the first step in visual processing involves reconstructing visible surfaces (so called 
2.5D sketch).  Once the 3D surfaces are reconstructed, the 3D shape is produced by expressing the surfaces in the 
object’s centered representation and filling-in the back, invisible part of the shape by using information stored in the 
memory.  Biederman [2] emphasized the role of recognition, as opposed to reconstruction of shapes.  Recognition 
involved a small set of simple 3D elementary parts, called geons.  The third approach, represented by Poggio & 
Edelman [3], assumed that perceptual representation of 3D scenes involves a set of 2D images of the scenes and 
recognition involves evaluating similarities between the current, and the remembered images. 
 
In this paper we present a new theory, in which a 3D shape percept is produced by applying simplicity constraints 
(priors) to a single 2D view of the shape.  The following constraints are used: symmetry of a shape, planarity of the 
shape’s contours and compactness of the shape (maximal volume given its surface area).  Compactness has never been 
used before in algorithms for reconstructing 3D shapes.  The new theory is illustrated on randomly generated symmetric 
polyhedra.  
 

ALGORITHM 
 

A single 2D image of a 3D shape is not sufficient for a unique reconstruction of the shape.  The problem is ill-posed 
because the family of possible 3D interpretations is infinitely large [4].  Despite this inherent ambiguity, a human 
observer perceives a single 3D shape when presented with its 2D image, and the percept is usually veridical (the percept 
agrees with the shape “out there”).  It is obvious that the human visual system “regularizes” the inverse problem, by 
imposing constraints on the family of possible 3D interpretations [5].  Several constraints were used in previous models 
of 3D shape reconstruction: symmetry of the shape, planarity of contours and minimum variance of angles [6].  The main 
limitation of these constraints was that they could not be applied to a wide range of shapes.  For example, when the 
shape is not a polyhedron, minimum variance of angles cannot be used. 
 
Constraints, such as symmetry, can be used in two ways in regularization models: implicitly or explicitly.  Implicit 
constraint is equivalent to an assumption.  For example, in Ullman’s structure from motion algorithm [7], object’s 
rigidity was an assumption, which allowed Ullman to reconstruct the 3D structure and its motion.  Rigidity can also be 
used as an explicit constraint in a regularization algorithm [8].  In such a case, the reconstructed shape does not have to 
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be perfectly rigid.  Instead, the shape is as rigid as possible, and at the same time, as consistent with the data as possible.  
The compromise between fitting the image data and satisfying the constraint is controlled by a regularization 
parameter[4].  

 
Symmetry was used by Vetter and Poggio [9] as an implicit constraint in their algorithm for 3D shape reconstruction.  
They considered a single orthographic image of a 3D wire (transparent) shape.  When the shape has two planes of 
symmetry, the reconstruction is unique (up to depth reversal).  But when the shape has only one plane of symmetry, the 
reconstruction is not unique.  Again, when a human observer is presented with a single orthographic image of a 
symmetric shape, he or she perceives a single shape (see Figure 1).  The question arises about the constraints that the 
human visual system uses.  According to our theory, the human visual system chooses, from the infinitely many 
symmetric 3D interpretations, the one that has maximal volume for a given surface area.  Maximizing volume, while 
keeping the surface area constant is equivalent to maximizing 3D compactness of the shape.  2D compactness was used 
by Brady & Yuille [10] to reconstruct the slant of surfaces.  To our knowledge, 3D compactness has never been used 
before in 3D shape reconstruction. 
 

 
 

Figure 1:  A single orthographic image of a symmetric shape leads to a unique percept. 
 

 
We begin with describing how Vetter & Poggio used symmetry to restrict the family of 3D interpretations.  Given an 
orthographic image of a transparent mirror-symmetric 3D shape, and assuming known correspondence of symmetric 
points, Vetter & Poggio showed how to compute a virtual view virtualp  of the shape, given its real view realp :  

 

realvirtual Dpp =                                                                                  (1) 
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Under this transformation, for any symmetric pair of points [ ]TRRLLreal YXYXp =  in the real (given) view, 

their corresponding pair of points in the virtual view is [ ]TLLRRvirtual YXYXp −−= .  The virtual view is 
another orthographic view of the same 3D shape.  Specifically, given an orthographic image of a 3D shape, which has 

SPIE-IS&T/ Vol. 6499  64990B-2



B A'

 

 

one plane of symmetry, a second orthographic image can be computed directly from the given image, without the 
knowledge of the 3D shape, itself.  Degenerate cases involve images, which themselves are mirror symmetric.  One way 
to explain the construction of a virtual view is to observe that when a shape is mirror symmetric, a 3D reflection of the 
shape relative to a plane, can be undone by a 3D rigid motion.  An orthographic image of a 3D reflection of a shape 
with respect to the plane X=0, is equivalent to a 2D reflection of an orthographic image with respect to the line x=0.  
This 2D reflection is represented by substituting each x coordinate in a 2D image by –x.  It follows that a virtual image 
is a valid image of the 3D symmetric shape obtained from a different viewing direction.  Figure 2 shows an example of 
a real and virtual view of a symmetric wire (transparent) shape. 
 

 
Figure 2.  A real (left) and virtual (right) images of a 3D symmetric shape.  A, B are images of a symmetric pair of 

points in the 3D shape.  A′ and B′ are the corresponding points in the virtual image.  Note that when the virtual image 
was produced, A′ was obtained (computed) from B.  But in the 3D representation, A′ is produced after a 3D rigid 

rotation of A.  
 
Two orthographic views are not sufficient to reconstruct a 3D shape [7, 11, 12].  Specifically, two orthographic views 
determine a family of 3D shapes, and the family is characterized by one parameter.  It follows that a single orthographic 
view of a mirror-symmetric shape is consistent with a one-parameter family of 3D symmetric shapes.  Next, we show 
how this family is determined.  
 
In orthographic projection, 3D translation does not affect the shape or size of the 2D image.  Specifically, translations 
along the direction orthogonal to the image plane have no effect on the image, and translations parallel to the image 
plane result in translations of the image.  It follows that the 3D translation of the shape can be eliminated by translating 
the real view or virtual view, or both, so that the corresponding points in the two images coincide.  Let this common 
point be the origin O  of the image plane.  Without restricting generality we can assume that the corresponding 3D 
point coincides with O , as well. After these translations, the real view can be considered an orthographic projection of 
the 3D shape at its original orientation and a virtual view is the one produced after some rotation )(R  of the 3D shape 

around the origin O . Let the 3D coordinates of a vertex at its original orientation be [ ]Tiiii ZYXX = and its 

corresponding vertex after rotation )(R  be [ ]Tiiii ZYXX ''''
= . The following relation is satisfied: 

ii XRX =
'

 

This can be written as follows: 
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Consider the first two elements of the column vector 
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In equation (3), the points [ ]Tii YX and [ ]Tii YX '' in real and virtual views are known. Huang and Lee [11] derived 

the following relation between [ ]Tii YX , [ ]Tii YX '' and R : 

0'' 31321323 =−+− iiii YrXrYrXr                                                            (4) 

Let’s put the four elements of the rotation matrix R in a vector [ ]31321323 rrrr .  Using equation (4), three pairs of 
corresponding points between real and virtual views are sufficient to compute the direction of this vector.  The length of 
this vector can be derived from the constraint that the rotation matrix is orthonormal: 

2
33

2
32

2
31

2
23

2
13 1 rrrrr −=+=+                                                          (5) 

Thus, if 33r is given, [ ]31321323 rrrr can be computed from the two images.  The remaining elements of the 
rotation matrix can be determined based on the orthonormality of R (see Appendix).  It follows that two orthographic 
images (real and virtual) determine R  up to 33r  which remains unknown.  This unknown characterizes the family of 
3D symmetric shapes consistent with the given 2D orthographic image of a given symmetric shape. Usually for 
each 33r , two different rotation matrices are produced. This is because if [ ]31321323 rrrr  is the solution of 

equations (4) and (5), [ ]31321323 rrrr −−−−  is also a solution. Consequently, two 3D shapes are 
reconstructed, related to one another by depth reversal. 
 

As shown just above, the family of 3D reconstructed shapes can be determined from four corresponding points 
in the real and virtual images.  One point is the origin )(O .  It follows that three other points have to be selected to 
compute the rotation matrix )(R . Note that these four points cannot be coplanar in the 3D shape. In application, three 
visible pairs of symmetric points (i.e., 6 points) in the real view are selected and their corresponding points in the virtual 
view are computed using Vetter and Poggio’s method (Equation (1)). From these three pairs of points, four points are 
chosen (two of them are chosen from one symmetric pair and the other two are chosen from the other two pairs) to 
compute R . To guarantee that the corresponding 3D vertices of these four points are not coplanar, which is equivalent 
to the fact that these three pairs of points are not coplanar in 3D, we only need to verify that the midpoints ),,( 321 vvv  
of these three pairs in the orthographic view are not collinear:♣  

0)()( 3121 ≠−×− vvvv  

After the four points are chosen, the rotation matrix R is computed, as described above.  Recall that R depends on the 
unknown value of r33.  Then the following steps are performed: 

1. All visible symmetric pairs of vertices are reconstructed using equation (3); 
2. If there are pairs of symmetric points, whose vertices are both invisible, reconstruction fails.  The reason is that 

if both [ ]Tii YX  and [ ]Tii YX '' are unknown, iZ cannot be computed; 

                                                           
♣ In some cases, the corresponding 3D vertices of those three symmetric pairs are not coplanar, but their midpoints in the view are 
collinear. This can happen when the 3D shape is symmetric with respect to the YZ plane.  In such a case, all midpoints in the 
orthographic image are on the y axis. In this case, their real view and virtual view are dependent and the reconstruction cannot be 
performed. Therefore, verifying that the image midpoints are not collinear implies that 3D points are not coplanar and the image is 
not degenerate.   
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3. For those pairs of symmetric points for which one point is visible and the other is occluded, planarity constraint 
is applied.  Symmetry in conjunction with planarity of contours of faces is sufficient to compute the 
coordinates of the occluded vertex.  In order to use a planarity constraint, at least three points from a given face 

)(S  have to be reconstructed first. Let the image of the visible vertex on this face be [ ]yx PPP = . The 

visible vertex )(V , whose image is P, is reconstructed as an intersection of the face S  and the 

line [ ] [ ]1000 λ+yx PP . The hidden counterpart of V is reconstructed by reflecting )(V  with 
respect to the symmetry plane of the shape.  The symmetry plane is determined by the midpoints of three 
reconstructed pairs.  Figure 3 shows a real and a virtual view of an opaque shape which can be reconstructed 
completely, i.e., not only the front (visible), but also the back (invisible) parts can be reconstructed.  For 
transparent (wire) shapes, steps 2 and 3 can be omitted because all vertices are visible in the image. For such 
shapes, two 3D shapes are produced (they are depth reversal of one another). For an opaque shape, on the other 
hand, occlusion eliminates one of these two interpretations.  So, paradoxically, opaque shapes, which provide 
less information in the image, lead to less ambiguity.   

 

Figure 3.  A real (left) and a virtual (right) view of a 3D symmetric opaque shape. 
 
 
Up to this point, we described how the one-parameter family of 3D shapes is determined.  This family is characterized 
by the value of 33r .  For each value of 33r , one, or at most two, shapes are reconstructed.  All 3D shapes from this 
family project to the same 2D image (the real view). From this infinitely large family of 3D shapes, we choose a shape 
with maximum compactness ( 32 / SV , V and S are the volume and surface area of the reconstructed shape, 
respectively).  Shape whose compactness is maximal is the shape whose volume is maximal for a given surface area.  
For the class of shapes we used, there was always a unique local maximum of compactness.  Interestingly, the 3D shape 
whose compactness is maximal is usually very close to the original shape that produced the 2D image from which the 
reconstruction was performed.  Figure 4 shows an example.  Several images of the original and reconstructed 3D shape 
are shown and it is clear that there two 3D shapes are almost identical.  One reason for why maximum compactness 
constraint works so well is that compact 3D shapes always produce compact 2D images, whereas non-compact 3D 
shapes are unlikely to produce compact 2D images. 
 
The next section presents preliminary psychophysical results that provide support for the new algorithm.  
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Figure 4.  Three images of the original (left) and reconstructed (right) 3D symmetric shape.  The reconstruction is close 
to perfect. 
  
 
 

PSYCHOPHYSICAL TEST OF THE NEW ALGORITHM 
 
To test whether the perceived 3D shape is close to the one with maximal compactness, reconstruction experiment was 
designed.  In this experiment, one 2D image of a 3D symmetric polyhedron (like that in Figure 1) was shown on the top 
of a computer monitor.  When the subject looks at a 2D image of a symmetric polyhedron, he or she perceives a 3D 
symmetric polyhedron.  The question is, which shape, from the infinitely many 3D symmetric shapes that are consistent 
with this image, the subject actually perceives.  In order to determine this, a 3D rotating shape was shown on the 
bottom.  The 3D shape was taken from the one-parameter family of shapes consistent with the given 2D image.  That is, 
the 3D shape was symmetric, but its shape could be adjusted by changing the value of r33 (see description of the 
algorithm).   The subject was asked to adjust the position of a slide bar representing the value of r33 until the rotating 3D 
shape was same as the perceived shape when looking at the 2D image on the top of the monitor.  The compactness Cp 
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of the perceived shape, of the original (real) shape Cr as well as the maximal compactness Cm were computed and 
stored for each trial.  Then, compactness of the perceived shape and of the original shape were normalized to the 
maximal compactness: 

CmCpCmRCP /)( −=  
CmCrCmRCR /)( −=  

One of the authors (YL) was tested in 120 trials, each trial with a randomly generated polyhedron.  For each 
polyhedron, a random 3D orientation was chosen and a 2D image computed.  The results are shown in Figures 5 and 6.  
Figure 5 shows a joint frequency histogram of the relative compactness RCP and RCR .  It can be seen that about 1/3 
of the original shapes had compactness very close to maximal ( RCR  less than 0.01) and they were perceived as such, 
by the subject ( RCP  less than 0.01).  Only a handful of shapes had perceived compactness very different from the 
maximal compactness ( RCP >0.03).  Figure 6 shows cumulative relative frequency distribution for RCP  and RCR .  
It can be seen that the curve for perceived shapes increases somewhat faster than that for real shapes.  For example, 70% 
of perceived shapes had relative compactness less than 0.01, while only 60% of original shapes had relative 
compactness within this range.  This means that the human percept is biased towards shapes with maximum 
compactness. 

 
Figure 5: Frequency histogram of relative compactness for real shapes (RCR) and perceived shapes (RCP) 
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Figure 6: Cumulative relative frequency distribution of relative compactness for real and perceived shapes 

 
 
 

SUMMARY AND DISCUSSION 
 

We described a new algorithm for reconstructing 3D shapes.  The main idea of the algorithm is based on the 
regularization method of solving inverse problems [4, 5].  There are two main differences between the conventional 
regularization methods and the one described here.  First, our algorithm uses spatially global, rather than spatially local 
constraints.  Spatially local constraints, such as smoothness of surfaces are attractive because they are quite general.  
However, they are not strong enough, and, as a result, they cannot produce a unique 3D shape from a single 2D image.  
This can be accomplished only by spatially global constraints, such as symmetry.  The second difference is the use of 
3D compactness in our algorithm.  This constraint has not been used before in 3D shape reconstruction.  Note that 
symmetry and, especially compactness are very general.  They can be applied to polyhedral, as well as smoothly curved 
shapes.  Considering the fact that maximum compactness leads to reconstructions that are similar to the percept of a 
human observer, it seems reasonable to expect that our algorithm will provide computational basis for a model of 
human 3D shape perception.  Note that our model is different from prior models of human shape perception.  We do not 
use 3D surfaces, as Marr did, nor do we use geons.  Our theory is an extension of the theories of Gestalt 
Psychologists[13], of Hochberg & McAlister [14] and Perkins [15]. 
 
The current implementation of our algorithm uses orthographic images.  If a single perspective image of a symmetric 
shape is given, a unique reconstruction is possible, in principle, even without constraints.  However, the reconstruction 
is computationally unstable in the presence of noise, for the same reason that binocular reconstruction is unstable [16].  
Therefore, compactness constraint has to be used with perspective images, as well.  Next, we want to point out that our 
algorithm assumes that the image has already been segmented and the vertices and contours of faces have been 
established.  Finally, we assume that it is known which points in the image represent pairs of symmetric points.  Our 
future work will address the issue of symmetry detection, as well as robust image segmentation.  
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These are five equations with four unknowns. The last four equations are dependent♠, so only three of them can be used 
to calculate 222112,11 ,, rrrr  
Suppose the first four of the five equations are used. 
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